Skip to main content
Log in

Locality in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics

  • Published:
Foundations of Physics Letters

Abstract

Bell's theorem depends crucially on counterfactual reasoning, and is mistakenly interpreted as ruling out a local explanation for the correlations which can be observed between the results of measurements performed on spatially-separated quantum systems. But in fact the Everett interpretation of quantum mechanics, in the Heisenberg picture, provides an alternative local explanation for such correlations. Measurement-type interactions lead, not to many worlds but, rather, to many local copies of experimental systems and the observers who measure their properties. Transformations of the Heisenberg-picture operators corresponding to the properties of these systems and observers, induced by measurement interactions, “label” each copy and provide the mechanism which, e. g., ensures that each copy of one of the observers in an EPRB or GHZM experiment will only interact with the “correct” copy of the other observer(s). The conceptual problem of nonlocality is thus replaced with a conceptual problem of proliferating labels, as correlated systems and observers undergo measurement-type interactions with newly-encountered objects and instruments; it is suggested that this problem may be resolved by considering quantum field theory rather than the quantum mechanics of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Everett III, “‘Relative state’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454-462 (1957); reprinted in B. S. DeWitt and N. Graham, eds., The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1973).

    Article  ADS  MathSciNet  Google Scholar 

  2. B. S. DeWitt, “Quantum mechanics and reality,” Phys. Today 32, 155-165 (1970).

    Google Scholar 

  3. D. N. Page, “The Einstein-Podolsky-Rosen physical reality is completely described by quantum mechanics,” Phys. Lett. 91A, 57-60 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  4. F. J. Tipler, “The many-worlds interpretation of quantum mechanics in quantum cosmology,” in R. Penrose and C. J. Isham, Quantum Concepts in Space and Time (Oxford University Press, New York, 1986).

    Google Scholar 

  5. F. J. Tipler, “Does quantum nonlocality exist? Bell's theorem and the many-worlds interpretation,” quant-ph/0003146.

  6. D. Albert and B. Loewer, “Interpreting the many-worlds interpretation,” Synthese 77, 195-213 (1988).

    Article  MathSciNet  Google Scholar 

  7. D. Z. Albert, Quantum Mechanics and Experience (Harvard University Press, Cambridge, MA, 1992).

    Google Scholar 

  8. L. Vaidman, “On the paradoxical aspects of new quantum experiments,” in D. Hull et al., eds., PSA 1994: Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association 1, 211-217 (Philosophy of Science Association, East Lansing, MI, 1994).

    Google Scholar 

  9. L. Vaidman, “On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory,” Int. Stud. Phil. Sci. 12, 245-261 (1998); quant-ph/9609006.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Vaidman, “The many-worlds interpretation of quantum mechanics,” http://www.tau.ac.il/ vaidman/mwi/mwstr.html (1999).

  11. M. C. Price, “The Everett FAQ,” http://www.hedweb.com/manworld.htm (1995).

  12. M. Lockwood, “‘Many minds’ interpretations of quantum mechanics,” Brit. J. Phil. Sci. 47, 159-188 (1996).

    Article  MathSciNet  Google Scholar 

  13. D. Deutsch, “Reply to Lockwood,” Brit. J. Phil. Sci. 47 222-228 (1996).

    Article  MathSciNet  Google Scholar 

  14. D. Deutsch, and P. Hayden, “Information flow in entangled quantum systems,” Proc. R. Soc. Lond. A456, 1759-1774, (2000); quant-ph/9906007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200, (1964). Reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  16. W. G. Farris, “Probability in quantum mechanics,” Appendix to D. Wick, The Infamous Boundary: Seven Decades of Heresy in Quantum Physics (Springer, New York, 1995).

    Google Scholar 

  17. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ, 1951).

    Google Scholar 

  18. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).

    Article  ADS  MATH  Google Scholar 

  19. N. D. Mermin, “Spooky actions at a distance: mysteries of the quantum theory,” in The Great Ideas Today (Encyclopedia Britannica, 1988), reprinted in N. D. Mermin, Boojums All The Way Through: Communicating Science in a Prosaic Age (Cambridge University Press, Cambridge, 1990).

  20. A. Aspect, J. Dalibard, and G. Roger, “Experimental tests of Bell's inequalities using time-varying analyzers,” Phys. Rev. Lett. 47, 1804-1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Weihs, T. Jennewien, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell's inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039-5043 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. N. D. Mermin, “Quantum mysteries revisited,” Am. J. Phys. 58 731-734 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  23. N. D. Mermin, “What's wrong with these elements of reality?,” Physics Today, June 1990, 9-11.

  24. D. M. Greenberger, M. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in M. Kafatos, ed., Bell's Theorem, Quantum Theory, and Conceptions of the Universe (Kluwer Academic, Dordrecht, The Netherlands, 1989).

    Google Scholar 

  25. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. d'Espagnat, Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995), Section 10.8.

    MATH  Google Scholar 

  27. L. E. Ballentine, “Can the statistical postulate of quantum theory be derived?—a critique of the many-universes interpretation,” Found. Phys. 3, 229-240 (1973).

    Article  ADS  Google Scholar 

  28. N. Graham, “The measurement of relative frequency,” in B. S. DeWitt and N. Graham, eds., The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1973).

    Google Scholar 

  29. D. Deutsch, “Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1-41 (1985).

    Article  MathSciNet  Google Scholar 

  30. B. DeWitt, “The quantum mechanics of isolated systems,” Int. J. Mod. Phys. A13, 1881-1916 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Bohr, “Can quantum-mechanical description of reality be considered complete?” Phys. Rev. 48, 696-702 (1935), quoted in Chap. 16 of J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Article  ADS  MATH  Google Scholar 

  32. D. L. Zhou, S. X. Yu, and C. P. Sun, “Idealization second quantization of composite particles,” quant-ph/0012080.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M.A. Locality in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics. Found Phys Lett 14, 301–322 (2001). https://doi.org/10.1023/A:1012357515678

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012357515678

Navigation