Skip to main content
Log in

Genetic structure and diversity of western flower thrips, Frankliniella occidentalis in a French bean agroecosystem of Kenya

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Western flower thrips (WFT) (Frankliniella occidentalis) is an introduced pest that harms French bean production in Kenya and other countries. Since new WFT management approaches are being developed, a closer look at the genetic makeup of WFT populations can give new insights into source habitats, crop colonization patterns or host plant preferences, which are prerequisites for integrated pest management (IPM) strategies. For this purpose, we used six microsatellite loci to analyse the genetic structure, diversity and gene flow of WFT sampled on French beans, intercrops and weeds in Kenyan French bean production areas. The results of this preliminary study indicate that the available microsatellites are sufficiently polymorphic for more detailed analyses on local dispersal patterns of WFT in Kenya. Even with the limited data set, the results reveal that F. occidentalis populations show considerable genetic differentiation between host plant species but not between regions, which suggests reduced gene flow and a possible development of biotypes. Possible consequences of the results on IPM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baez L, Reitz S. R., Funderburk J. E. and Olson S. M. (2011) Variation within and between Frankliniella thrips species in host plant utilization. Journal of Insect Science 11, 41.

    Article  Google Scholar 

  • Brødsgaard H. F. (1994) Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. Journal of Economic Entomology 87, 1141–1146.

    Article  Google Scholar 

  • Brunner F. C. and Frey J. E. (2010) Habitat-specific population structure in native western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera). Journal of Evolutionary Biology 23, 797–804. doi:10.1111/j.1420-9101.2010.01946.x.

    Article  CAS  PubMed  Google Scholar 

  • Brunner F. C., Chatzivassiliou E. K., Katis N. I. and Frey J. E. (2004) Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93, 364–370. doi:10.1038/sj.hdy.6800512.

    Article  CAS  PubMed  Google Scholar 

  • Cao Y., Zhi J., Cong C. and Margolies D. C. (2014) Olfactory cues used in host selection by Frankliniella occidentalis (Thysanoptera: Thripidae) in relation to host suitability. Journal of Insect Behaviour 27, 41–56. doi:10.1007/sl0905-013-9405-5.

    Article  Google Scholar 

  • Chau A., Heinz K. M. and Davies F. T. Jr (2005) Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum. Entomologia Experimentalis et Applicata 117, 27–39. doi:10.1111/j.1570-7458.2005.00326.x.

    Article  Google Scholar 

  • Chevet E., Lemaître G. and Katinka M. D. (1995) Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Research 23, 3343–3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kogel W. J., Bosco D., van der Hoek C. and Mollema M. (1999) Effect of host plant on body size of Frankliniella occidentalis and its correlation with reproductive capacity. European Journal of Entomology 96, 365–368.

    Google Scholar 

  • Doederlein T.A. and Sites R. W. (1993) Host plant preferences of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) for onions and associated weeds on the southern high plains. Journal of Economic Entomology 86, 1706–1713.

    Article  Google Scholar 

  • Excoffier L. and Lischer H. E. L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567. doi:10.1111/j.1755-0998.2010.02847.x.

    Article  PubMed  Google Scholar 

  • Excoffier L., Smouse P. and Quattro J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kedera C. and Kuria B. (2005) Invasive alien species in Kenya: Status and management, pp. 199–204. In Identification of Risks and Management of Invasive Alien Species using the IPPC Framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention. 22–26 September 2003, Braunschweig, Germany. FAO, Rome, Italy.

    Google Scholar 

  • Langella O. (1999) Populations 1.2.32. Distributed by the author. https://doi.org/www.bioinformatics.org/project/?group_id=84. Accessed 20 Oct 2015.

    Google Scholar 

  • Lewis T. (1997) Major crops infested by thrips with main symptoms and predominant injurious species (Appendix II), pp. 675–709. In Thrips as Crop Pests (edited by T. Lewis). CAB International, Oxon.

    Google Scholar 

  • Mfuti D. K, Subramanian S., van Tol W. H. M., Wiegers G.L., de Kogel W. J., Niassy S., du Plessis H, Ekesi S. and Maniania N. K. (2016) Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Management Science 72, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Mirnezhad M., Schidlo N, Klinkhamer P. G. L. and Leiss K. A. (2012) Variation in genetics and performance of Dutch western flower thrips populations. Journal of Economic Entomology 105, 1816–1824.

    Article  CAS  PubMed  Google Scholar 

  • Moritz G., Brandt S., Triapistyn S. and Subramanian S. (2013) Identification and Information Tools for Pest Thrips in East Africa. QAAFI Biological Information Technology (QBIT), The University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Moritz G., Mound L. A., Morris D. C. and Goldarazena A. (2004) Pest Thrips of the World on CD-Rom: An Identification and Information System Using Molecular and Microscopial Methods. The University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Muvea A. M., Waiganjo M. M., Kutima H. L., Osiemo Z., Nyasani J. O. and Subramanian S. (2014) Attraction of pest thrips (Thysanoptera: Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations. International Journal of Tropical Insect Science 34, 197–206.

    Google Scholar 

  • Nault B. A., Kain W. C. and Wang P. (2014) Seasonal changes in Thrips tabaci population structure in two cultivated hosts. PLoS One 9 (7), e101791. doi:10.1371/journal.pone.0101791.

    Google Scholar 

  • Nderitu J. H., Kasina M. J., Nyamasyo G. N., Waturu C. N. and Aura J. (2008) Management of thrips (Thysanoptera: Thripidae) on French beans (Fabaceae) in Kenya: Economics of insecticide applications. Journal of Entomology 5, 148–155.

    Article  CAS  Google Scholar 

  • Nderitu J. H., Wambua E. M., Olubayo E, Kasina M. J. and Waturu C. N. (2007) Management of thrips (Thysanoptera: Thripidae) infestation on French beans (Phaseolus vulgaris L.) in Kenya by combination of insecticides and varietal resistance. Journal of Entomology 4, 469–473.

    Article  CAS  Google Scholar 

  • Nei M., Tajima F and Tateno Y. (1983) Accuracy of estimated phylogenetic trees from molecular data: II. Gene frequency data. Journal of Molecular Evolution 19, 153–170.

    Article  CAS  PubMed  Google Scholar 

  • Niassy S., Maniania N. K., Subramanian S., Gitonga L. M. and Ekesi S. (2012a) Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomologia Experimentalis et Applicata 142, 97–103. doi:10.1111/j.1570-7458.2011.01203.x.

    Article  Google Scholar 

  • Niassy S., Maniania N. K, Subramanian S., Gitonga L. M., Mburu D. M., Masiga D. and Ekesi S. (2012b) Selection of promising fungal biological control agent of the western flower thrips Frankliniella occidentalis (Pergande). Letters in Applied Microbiology 54, 487–493. doi:10.1111/j.1472-765X.2012.03241.x.

    Article  CAS  PubMed  Google Scholar 

  • Nyasani J. O., Meyhöfer R., Subramanian S., and Poehling H.-M. (2012) Effect of intercrops on thrips species composition and population abundance on French beans in Kenya. Entomologia Experimentalis et Applicata 142, 236–246.

    Article  Google Scholar 

  • Nyasani J. O., Meyhöfer R., Subramanian S., and Poehling H.-M. (2013) Feeding and oviposition preference of Frankliniella occidentalis for crops and weeds in Kenyan French bean fields. Journal of Applied Entomology 137, 204–213. doi:10.1111/j.1439-0418.2012.01723.x.

    Article  Google Scholar 

  • Nyasani J. O., Subramanian S., Poehling H.-M., Maniania N. K, Ekesi S. and Meyhöfer R. (2015) Optimizing western flower thrips management on French beans by combined use of beneficiais and imidacloprid. Insects 6, 279–296. doi:10.3390/insects6010279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paetkau D., Slade R., Burden M. and Estoup A. (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Peakall R. and Smouse P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearsall I. A. (2000) Flower preference behaviour of western flower thrips in the Similkameen Valley, British Columbia, Canada. Entomologia Experimentalis et Applicata 95, 303–313. doi:10.1046/j.1570-7458.2000.00669.x.

    Article  Google Scholar 

  • Piry S., Alapetite A., Cornuet J.-M., Paetkau D., Baudouin L. and Estoup A. (2004) GENECLASS2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity 95, 536–539.

    Article  CAS  Google Scholar 

  • Raymond M. and Rousset F. (1995) An exact test for population differentiation. Evolution 49, 1283–1286.

    Article  Google Scholar 

  • Rousset F. (2008) Genepop’007: a complete reimplementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8, 103–106. doi:10.1111/j.1471-8286.2007.01931.x.

    Article  PubMed  Google Scholar 

  • Rugman-Jones P. F, Hoddle M. S. and Stouthamer R. (2010) Nuclear-mitochondrial barcoding exposes the global pest western flower thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. Journal of Economic Entomology 103, 877–886.

    Article  PubMed  Google Scholar 

  • Saitou N. and Nei M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sunnucks P. and Hales D. F (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I—II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C., Hutchinson W.F.D., Wills D. P. and Shipley P. (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.

    Article  Google Scholar 

  • Yang X.-M., Sun J.-T, Xue X.-E, Li J.-B. and Hong X.-Y (2012a) Invasion genetics of the western flower thrips in China: Evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS One 7, e34567. doi:10.1371/journal.pone.0034567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X. M., Sun J. T, Xue X. E, Zhu W. C. and Hong X. Y (2012b) Development and characterization of 18 novel EST-SSRs from the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Molecular Sciences 13, 2863–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hondelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hondelmann, P., Nyasani, J.O., Subramanian, S. et al. Genetic structure and diversity of western flower thrips, Frankliniella occidentalis in a French bean agroecosystem of Kenya. Int J Trop Insect Sci 37, 71–78 (2017). https://doi.org/10.1017/S1742758417000066

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758417000066

Key words

Navigation