Skip to main content
Log in

Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly and evaluation of a transgenic olive fruit fly strain

  • Research Paper
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Research on the olive fruit fly Bactrocera oleae (Rossi) - rearing simplification, insect microflora and transgenic strain evaluation - yielded several findings: (1) incorporation of antibiotics in the adult diet is evidently not needed; (2) colonization appears to be easier when wild adults are collected from the field instead of using mature larvae emerging from field-collected infested olives; (3) a combination of standard solid starter with liquid (no cellulose powder) finisher impregnated in synthetic sponge larval diets was more promising compared with all-liquid diets; (4) molecular analysis revealed extensive differences in bacterial species associated with the fly between laboratory flies and strains from different olive varieties, as well as between strains originating from different seasons of the year; (5) when an enhanced green fluorescent protein transgenic strain was compared with the standard long mass-reared strain, it proved significantly inferior according to all quality control tests applied, i.e. egg production, egg hatch, larval-stage duration, pupal recovery, pupal weight, adult emergence and adult survival. The aforementioned findings are discussed in the context of mass rearing and quality requirements for more successful implementation of the sterile insect technique against this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behar A., Yuval B. and Jurkevitch E. (2005) Entero-bacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Molecular Ecology 14, 2637–2643.

    Article  CAS  Google Scholar 

  • Ben-Yosef M., Jurkevitch E. and Yuval B. (2008) Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratüis capitata. Physiological Entomology 33, 145–154.

    Article  Google Scholar 

  • Caillaud C. M. and Rahbe Y. (1999) Aposymbiosis in a cereal aphid: reproductive failure and influence on plant utilization. Ecological Entomology 24, 111–114.

    Article  Google Scholar 

  • Capuzzo C., Firrao G., Mazzon L., Squartini A. and Girolami V. (2005) “Candidatus Erwinia dacicola”, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology 55, 1641–1647.

    Article  CAS  Google Scholar 

  • Chrysargyris A., Bourtzis K. and Economopoulos A. E (2007) Identification of microflora in different strains of the olive fruit fly, Bactrocera (Dacus) oleae (Rossi) (Diptera, Tephritidae), pp. 135–136. Proceedings of the 12th Entomological Conference organized by the Hellenic Entomological Society, 13–16 November 2007, Larnaca, Cyprus (extended summary).

    Google Scholar 

  • Dale C. and Welburn S. C. (2001) The endosymbionts of tsetse flies: manipulating host-parasite interactions. International Journal for Parasitology 31, 628–631.

    Article  CAS  Google Scholar 

  • Dillon R. J. and Charnley A. K. (1986) Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: evidence for an antifungal toxin. Journal of Invertebrate Pathology 47, 350–360.

    Article  Google Scholar 

  • Dillon R. J., Vennard C. T., Buckling A. and Charnley A. K. (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecology Letters 8, 1291–1298.

    Article  Google Scholar 

  • Dimou I., Rempoulakis P. and Economopoulos A. P. (2010) Olive fruit fly [Bactrocera (Dacus) oleae (Rossi) (Diptera: Tephritidae)] adult rearing diet without antibiotic. Journal of Applied Entomology 134, 72–79.

    Article  Google Scholar 

  • Fytizas E. and Tzanakakis M. E. (1966) Some effects of streptomycin, when added to the adult food, on the adults of Dacus oleae (Diptera: Tephritidae) and their progeny. Annals of the Entomological Society of America 59, 269–273.

    Article  CAS  Google Scholar 

  • Gilliam M. (1997) Identification and roles of nonpathogenic microflora associated with honey bees. FEMS Microbiology Letters 155, 1–10.

    Article  CAS  Google Scholar 

  • Grenier A. M., Nardon C. and Nardon P. (1994) The role of symbiotes in flight activity of Sitophilus weevils. Entomologia Experimentalis et Applicata 70, 201–208.

    Article  Google Scholar 

  • Hagen K. S. (1966) Dependence of the olive fly Dacus oleae larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature (London) 209, 423–424.

    Article  Google Scholar 

  • Hagen K. S., Santas L. and Tsekouras A. (1963) A technique of culturing the olive fly, Dacus oleae Gmel, on synthetic media under xenic conditions, pp. 333–356. In Radiation and Radioisotopes Applied to Insects of Agricultural Importance. Symposium Proceedings, 22–26 April 1963, Athens, Greece. STI/PUB/74. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • IAEA (2003) Trapping Guidelines for Area-wide Fruit Fly Programmes. IAEA/FAO-TG/FFP. International Atomic Energy Agency, Vienna, Austria. 47 pp.

    Google Scholar 

  • Konstantopoulou M. A., Economopoulos A. P. and Manoukas A. G. (1996) Olive fruit fly (Diptera: Tephritidae) ADH allele selected under artificial rearing produced bigger flies than other ADH alleles. Journal of Economic Entomology 89, 1387–1391.

    Article  Google Scholar 

  • Konstantopoulou M. A., Economopoulos A. P. and Raptopoulos D. G. (1999) Artificial rearing antimicrobials as selecting factors of Adh alleles in the olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Diptera: Tephritidae). Journal of Economic Entomology 92, 563–568.

    Article  CAS  Google Scholar 

  • Koukidou M., Klinakis A., Reboulakis C., Zagoraiou L., Tavernarakis N., Livadaras I., Economopoulos A. P. and Savakis C. (2006) Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology 15, 95–103.

    Article  CAS  Google Scholar 

  • Mittler T. E. and Tsitsipis J. A. (1973) Economical rearing of larvae of the olive fruit fly, Dacus oleae, on a liquid diet offered on cotton towelling. Entomologia Experimentalis et Applicata 16, 292–293.

    Article  Google Scholar 

  • Montllor C. B., Maxmen A. and Purcell A. H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27, 189–195.

    Article  Google Scholar 

  • Petri L. (1910) Untersuchung uber die Darmbakterien der Olivenfliege. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 26, 357–367.

    Google Scholar 

  • SPSS (1999) SPSS User’s Manual. SPSS Inc., Chicago, USA.

    Google Scholar 

  • Treves D. S. and Martin M. M. (1994) Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepis-matidae). Journal of Chemical Ecology 20, 2003–2020.

    Article  CAS  Google Scholar 

  • Tsiropoulos G. J. (1983) Microflora associated with wild and laboratory reared adult olive fruit flies, Dacus oleae. Zeitschrift für Angewandte Entomologie 96, 337–340.

    Article  Google Scholar 

  • Tsiropoulos G. J. (1992) Feeding and dietary requirements of the tephritid fruit flies, pp. 93–118. In Advances in Insect Rearing for Research and Pest Management (edited by T. E. Anderson and N. C. Leppla). Westrum Press Inc., Oxford, UK.

    Google Scholar 

  • Tsitsipis J. A. (1975) Mass rearing of olive fruit fly, Dacus oleae (Gmelin), at ‘Democritos’, pp. 93–100. Panel Proceedings Series (IAEA): Panel and Research Coordination Meeting on the Sterile-Male Technique for Control of Fruit Flies, Vienna (Austria), 12 November 1973/FAO, Vienna (Austria). Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture.

    Google Scholar 

  • Tsitsipis J. A. (1977) Development of a caging and egging system for mass rearing the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Zeitschrift für Angewandte Entomologie 83, 96–105.

    Article  Google Scholar 

  • Tsitsipis J. A. and Kontos A. (1983) Improved solid adult diet for the olive fruit fly Dacus oleae. Entomologia Hellenica 1, 24–29.

    Article  Google Scholar 

  • Tzanakakis M. E. (1971) Rearing methods for the olive fruit fly Dacus oleae (Gmelin). Annals of the School of Agriculture and Forestry, University of Thessaloniki 14, 309–317.

    Google Scholar 

  • Vanderzant E. S. (1974) Development, significance and application of artificial diets for insects. Annual Review of Entomology 19, 139–160.

    Article  Google Scholar 

  • Weisburg W. G., Barns S. M., Pelletier D. A. and Lane D. J. (1991) 16S ribosomal DNA amplification for phylo-genetic study. Journal of Bacteriology 173, 697–703.

    Article  CAS  Google Scholar 

  • Wilkinson T. L. and Ishikawa H. (2000) Injection of essential amino acids substitutes for bacterial supply in aposymbiotic pea aphids (Acyrthosiphon pisum). Entomologia Experimentalis et Applicata 94, 85–91.

    Article  CAS  Google Scholar 

  • Yamvrias C., Panagopoulos C. G. and Psalidas P. G. (1970) Preliminary study of the internal bacterial flora of the olive fruit fly. Annales de l’Institut Phytopathologie Benaki, N.S. 9, 201–206.

    Google Scholar 

  • Zchori-Fein E., Borad C. and Harari A. R. (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology 31, 164–169.

    Article  Google Scholar 

  • Zurek L. and Keddie B. A. (1996) Contribution of the colon and colonic bacterial flora to metabolism and development of the American cockroach Periplaneta americana L. Journal of Insect Physiology 42, 743–748.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polychronis Rempoulakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rempoulakis, P., Dimou, I., Chrysargyris, A. et al. Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly and evaluation of a transgenic olive fruit fly strain. Int J Trop Insect Sci 34 (Suppl 1), S114–S122 (2014). https://doi.org/10.1017/S1742758414000162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758414000162

Key words

Navigation