Skip to main content
Log in

Cryptostrobin and catechin isolated from Eugenia mattosii D. Legrand leaves induce endothelium-dependent and independent relaxation in spontaneously hypertensive rat aorta

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Considering the therapeutic potential of phenolic compounds, the purpose of the present study was to investigate the mechanisms involved in the relaxation induced by cryptostrobin and catechin, isolated from Eugenia mattosii D. Legrand leaves, in the aorta of spontaneously hypertensive rats (SHR).

Methods

The thoracic aorta was isolated from SHR and kept in the organ bath system by recording contractile or relaxant responses.

Results

The addition of cumulative concentrations of cryptostrobin and catechin induced endothelium-dependent and-independent relaxation in aorta rings from SHR, as well as both compounds were effective in reducing phenylephrine-induced contraction. Pretreatment of aortic rings with Nm-nitro-L-arginine methylester (L-NAME, an inhibitor of nitric oxide synthase) or 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ, an inhibitor of soluble guanylate cyclase), resulted in a significant change of relaxant effect induced by catechin, and a slight influence on cryptostrobin-induced relaxation. Muscarinic receptor and potassium channels are involved in catechin-induced relaxation as assessed using atropine (a muscarinic receptor antagonist), tetraethylammonium (a non-selective K+ channel blocker) and glibenclamide (an ATP-sensitive K+ channel blocker). Conversely, cryptostrobin, but not catechin, blunted the contraction induced by the addition of phenylephrine in a calcium-free solution. Besides that, cryptostrobin attenuated the contraction of rat aorta rings induced by internal Ca2+ release and external Ca2+ influx.

Conclusions

These findings indicated that cryptostrobin and catechin alter vascular smooth muscle reactivity, and this effect may be involved, at least in part, by enhancing the endothelium NO/cGMP pathway and potassium channels activation. In addition, cryptostrobin reduced the phenylephrine, KC1 and CaCl2-induced contractions in a calcium-free solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14:111–29, doi: https://doi.org/10.1038/nrd4510

    CAS  PubMed  Google Scholar 

  2. Fong HHS. Integration of herbal medicine into modern medical practices: issues and prospects. Integr Cancer Ther 2002;1:287–93, doi:https://doi.org/10.1177/153473540200100313 discussion 293.

    PubMed  Google Scholar 

  3. Cragg CM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 2013;1830:3670–95, doi:https://doi.org/10.1016/j.bbagen.2013.02.008.

    CAS  Google Scholar 

  4. Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008;25:475, doi:https://doi.org/10.1039/b514294f.

    CAS  PubMed  Google Scholar 

  5. Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan- Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem 2013;141:3282–9, doi:https://doi.org/10.1016/j.foodchem.2013.05.122.

    CAS  PubMed  Google Scholar 

  6. Franco V, Oparil S, Carretero OA. Hypertensive therapy: part I. Circulation 2004;109:2953–8, doi:https://doi.org/10.1161/01.CIR.0000132614.41493.B5.

    PubMed  Google Scholar 

  7. Egan BM. Prediction of incident hypertension. Health implications of data mining in the “Big Data” era. J Hypertens 2013;31:2123–4, doi:http://dx.doi.org/10.1097/HJH.0b013e328365b932.

    CAS  Google Scholar 

  8. Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 2002;90:21–8.

    CAS  PubMed  Google Scholar 

  9. Harnett KM, Biancani P. Calcium-dependent and calcium-independent contractions in smooth muscles. Am J Med 2003;115(Suppl 3A):24S–30S.

    CAS  PubMed  Google Scholar 

  10. Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients 2014;6:6020–47, doi:https://doi.org/10.3390/nu6126020.

    PubMed  PubMed Central  Google Scholar 

  11. Khan N, Khymenets O, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, et al. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014;6:844–80, doi:http://dx.doi.org/10.3390/nu6020844.

    PubMed  PubMed Central  Google Scholar 

  12. Mattera R, Benvenuto M, Giganti M, Tresoldi I, Pluchinotta F, Bergante S, et al. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes. Nutrients 2017;9:523, doi:http://dx.doi.org/10.3390/nu9050523.

    PubMed Central  Google Scholar 

  13. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2:270–8, doi:http://dx.doi.org/10.4161/oxim.2.5.9498.

    PubMed  PubMed Central  Google Scholar 

  14. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000;101:1899–906.

    CAS  PubMed  Google Scholar 

  15. Duffy SJ, Keaney JF, Holbrook M, Gokce N, Swerdloff PL, Frei B, et al. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 2001;104:151–6.

    CAS  PubMed  Google Scholar 

  16. Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009;58:537–52, doi:http://dx.doi.org/ 10.1007/S00011-009-0037-3.

    CAS  PubMed  Google Scholar 

  17. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res 1981;48:309–19.

    CAS  PubMed  Google Scholar 

  18. Doggrell SA, Brown L Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 1998;39:89–105.

    CAS  PubMed  Google Scholar 

  19. Vechi Giovana, Tenfen Adrielli, Maina BoederAriela, Lorena Hernandez-Gomez, de Cordova Caio Mauricio Mendes, et al. Chemical composition and antimycoplasmic activity of Eugenia mattosii leaves, stems and isolated compounds. Nat Prod Commun 2019;14:37–40.

    Google Scholar 

  20. Meddings JB, Scott RB, Fick GH. Analysis and comparison of sigmoidal curves: application to dose-response data. Am J Physiol Liver Physiol 1989;257:G982–9, doi:https://doi.org/10.1152/ajpgi.l989.257.6.G982.

    CAS  Google Scholar 

  21. Da Silva R de CV de AF, Crestani S, de Souza P, Boligon AA, Athayde ML, Santos ARS, et al. Endothelium-dependent and independent vasorelaxation induced by an n-butanolic fraction of bark of Scutia buxifolia Reiss (Rhamanaceae). J Ethnopharmacol 2012;141:997–1004.

    Google Scholar 

  22. Gendron G, Gobeil F, Morin J, D’Orleans- Juste P, Regoli D. Contractile responses of aortae from WKY and SHR to vasoconstrictors. Clin Exp Hypertens 2004;26:511–23.

    CAS  PubMed  Google Scholar 

  23. Vanhoutte PM. Endothelial dysfunction in hypertension. J Hypertens Suppl 1996;14:S83–93.

    CAS  PubMed  Google Scholar 

  24. Liischer TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1979;1986(8):344–8.

    Google Scholar 

  25. Mateo AO, de Artinano MA. Effect of high extracellular Ca(2+) levels in spontaneously hypertensive rat aorta. Eur J Pharmacol 2001;432:177–85.

    CAS  PubMed  Google Scholar 

  26. Levy BI, Duriez M, Phillipe M, Poitevin P, Michel JB. Effect of chronic dihydropyridine (isradipine) on the large arterial walls of spontaneously hypertensive rats. Circulation 1994;90:3024–33.

    CAS  PubMed  Google Scholar 

  27. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017;219:22–96, doi:http://dx.doi.org/10.1111/apha.l2646.

    CAS  Google Scholar 

  28. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 1978;30:293–331.

    CAS  PubMed  Google Scholar 

  29. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6, doi:https://doi.org/10.1038/288373a0.

    CAS  PubMed  Google Scholar 

  30. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 1988;93:515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994;269:13725–8.

    CAS  PubMed  Google Scholar 

  32. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 2009;147:S193–201, doi:https://doi.org/10.1038/sj.bjp.0706458.

    Google Scholar 

  33. Francis SH, Busch JL, Corbin JD. Sibley D. cGMP-Dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010;62:525–63, doi:https://doi.org/10.1124/pr.ll0.002907.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6, doi:https://doi.org/10.1038/327524a0.

    CAS  PubMed  Google Scholar 

  35. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850–3, doi:https://doi.org/10.1038/368850a0.

    CAS  PubMed  Google Scholar 

  36. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799–822.

    CAS  PubMed  Google Scholar 

  37. Byun E-B, Korematsu S, Ishikawa T, Nishizuka T, Ohshima S, Kanda T, et al. Apple procyanidins induce hyperpolarization of rat aorta endothelial cells via activation of K+ channels. J Nutr Biochem 2012;23:278–86, doi:https://doi.org/10.1016/j.jnutbio.2010.12.005.

    CAS  PubMed  Google Scholar 

  38. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A 1994;91:7583–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Somlyo AP, Somlyo AV. Ca 2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by g proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325–58, doi:https://doi.org/10.1152/physrev.00023.2003.

    CAS  PubMed  Google Scholar 

  40. Rembold CM. Regulation of contraction and relaxation in arterial smooth muscle. Hypertension 1979; 1992(20): 129–37.

    Google Scholar 

  41. Missiaen L, De Smedt H, Droogmans G, Himpens B, Casteels R. Calcium ion homeostasis in smooth muscle. Pharmacol Ther 1992;56:191–231.

    CAS  PubMed  Google Scholar 

  42. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984;308:693–8 n.d..

    CAS  PubMed  Google Scholar 

  43. Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 1984;220:345–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong KK. Effect of endothelium on the aortic contraction induced by norepinephrine and KC1 in isolated rat aorta. Artery 1996;22:55–60.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vechi, G., da Silva, R.C.M.V.A.F.d., de Souza, P. et al. Cryptostrobin and catechin isolated from Eugenia mattosii D. Legrand leaves induce endothelium-dependent and independent relaxation in spontaneously hypertensive rat aorta. Pharmacol. Rep 71, 950–957 (2019). https://doi.org/10.1016/j.pharep.2019.05.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.05.006

Keywords

Navigation