Skip to main content
Log in

Effects of the human SULT1A1 polymorphisms on the sulfation of acetaminophen, O-desmethylnaproxen, and tapentadol

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Non-opioid and opioid analgesics, as over-the-counter or prescribed medications, are widely used for the management of a diverse array of pathophysiological conditions. Previous studies have demonstrated the involvement of human cytosolic sulfotransferase (SULT) SULT1A1 in the sulfation of acetaminophen, O-desmethylnaproxen (O-DMN), and tapentadol. The current study was designed to investigate the impact of single nucleotide polymorphisms (SNPs) of the human SULT1A1 gene on the sulfation of these analgesic compounds by SULT1A1 allozymes.

Methods

Human SULT1A1 genotypes were identified by database search. cDNAs corresponding to nine SULT1A1 nonsynonymous missense coding SNPs (cSNPs) were generated by site-directed mutagenesis. Recombinant wild-type and SULT1A1 allozymes were bacterially expressed and affinity-purified. Purified SULT1A1 allozymes were analyzed for sulfation activity using an established assay procedure.

Results

Compared with the wild-type enzyme, SULT1A1 allozymes were shown to display differential sulfating activities toward three analgesic compounds, acetaminophen, O-desmethylnaproxen (O-DMN), and tapentadol, as well as the prototype substrate 4NP.

Conclusion

Results obtained indicated clearly the impact of genetic polymorphisms on the drug-sulfation activity of SULT1A1 allozymes. Such information may contribute to a better understanding about the differential metabolism of acetaminophen, O-DMN, and tapentadol in individuals with different SULT1A1 genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4NP:

4-nitrophenol

O-DMN:

O-desmethylnaproxen

PAPS:

3’-phosphoadenosine-5’-phosphosulfate

SULT:

cytosolic sulfotransferase

SNP:

single nucleotide polymorphism

TLC:

thin-layer

References

  1. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. Paracetamol: new vistas of an old drug. CNS Drug 2006;12(3–4)250–75 PMID: 17227290.

    Article  CAS  Google Scholar 

  2. Duggan KC, Walters MJ, Musee J, Harp JM, Kiefer JR, Oates JA, et al. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J Biol Chem 2010;5;285(45)34950–9 PMID: 20810665.

    Article  CAS  Google Scholar 

  3. Kress HG. Tapentadol and its two mechanisms of action: is there a new pharmacological class of centrally-acting analgesics on the horizon? Eur J Pain 2010;14(8)781–3 PMID: 20659810.

    Article  CAS  PubMed  Google Scholar 

  4. Constance JE, Campbell SC, Somani AA, Yellepeddi V, Owens KH, Sherwin CMT. Pharmacokinetics, pharmacodynamics, and pharmacogenetics associated with nonsteroidal anti-inflammatory drugs and opioids in pediatric cancer patients. Expert Opin Drug Metab Toxicol 2017;13(7)715–24 PMID: 28490206.

    Article  CAS  PubMed  Google Scholar 

  5. Li Wan Po A, Zhang WY. Systematic overview of co-proxamol to assess analgesic effects of addition of dextropropoxyphene to paracetamol. BMJ 1997;13;315(7122)1565–71 PMID: 9437273.

    Google Scholar 

  6. Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol 2008;82(3)155–65 PMID: 18232020.

    Article  CAS  PubMed  Google Scholar 

  7. Terlinden R, Ossig J, Fliegert F, Lange C, Göhler K. Absorption, metabolism, and excretion of 14C-labeled tapentadol HCl in healthy male subjects. Eur J Drug Metab Pharmacokinet 2007;32(3)163–9 PMID: 18062408.

    Article  CAS  PubMed  Google Scholar 

  8. Coulter C, Taruc M, Tuyay J, Moore C. Determination of tapentadol and its metabolite N-desmethyltapentadol in urine and oral fluid using liquid chromatography with tandem mass spectral detection. J Anal Toxicol 2010;34(8)458–63 PMID: 21819790.

    Article  CAS  PubMed  Google Scholar 

  9. Singh DR, Nag K, Shetti AN, Krishnaveni N. Tapentadol hydrochloride: a novel analgesic. Saudi J Anaesth 2013;7(3)322–6 PMID: 24015138.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Segre EJ. Naproxen metabolism in man. J Clin Pharmacol 1975;15(4 Pt. 2)316–23 PMID: 1127135.

    Article  CAS  PubMed  Google Scholar 

  11. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet 1997;32(4)268–93 PMID: 9113437.

    Article  CAS  PubMed  Google Scholar 

  12. Mulder GJ, Jakoby WB, editors. Drug metabolism. London: Taylor and Francis; 1990.

    Google Scholar 

  13. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 1997;11(1)3–14 PMID: 9034160.

    Article  CAS  PubMed  Google Scholar 

  14. Coughtrie MW. Sulfation through the looking glass-recent advances in sulfotransferase research for the curious. Pharmacogenomics J 2002;2(5)297–308 PMID: 12439736.

    Article  CAS  PubMed  Google Scholar 

  15. Strott CA. Sulfonation and molecular action. Endocr Rev 2002;23(5)703–32 PMID: 12372849.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao L, Pickering G. Paracetamol metabolism and related genetic differences. Drug Metab Rev 2011;43(1)41–52 PMID: 21108564.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto A, Liu MY, Kurogi K, Sakakibara Y, Saeki Y, Suiko M, et al. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis. J Biochem 2015;158(6)497–504 PMID: 26067475.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Falany CN, Ström P, Swedmark S. Sulphation of O-desmethylnaproxen and related compounds by human cytosolic sulfotransferases. Br J Clin Pharmacol 2005;60(6)632–40 PMID: 16305588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alherz FA, Almarghalani DA, Hussein NA, Kurogi K, Liu MC. A reappraisal of the 6-O-desmethylnaproxen-sulfating activity of the human cytosolic sulfotransferases. Can J Physiol Pharmacol 2017;95(6)647–51 PMID: 28177672.

    Article  CAS  PubMed  Google Scholar 

  20. Bairam AF, Rasool MI, Kurogi K, Liu MC. On the molecular basis underlying the metabolism of tapentadol through sulfation. Eur J Drug Metab Pharmacokinet 2017;42(5)793–800 PMID: 28070880.

    Article  CAS  PubMed  Google Scholar 

  21. Raftogianis RB, Her C, Weinshilboum RM. Human phenol sulfotransferase pharmacogenetics: STP1 gene cloning and structural characterization. Pharmacogenetics 1996;6(6)473–87 PMID: 9014197.

    Article  CAS  PubMed  Google Scholar 

  22. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM. Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 1997;239(1)298–304 PMID: 9345314.

    Article  CAS  PubMed  Google Scholar 

  23. Raftogianis RB, Wood TC, Weinshilboum RM. Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol 1999;58(4)605–16 PMID: 10413297.

    Article  CAS  PubMed  Google Scholar 

  24. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM, et al. Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 2007;16(5)463–70 PMID: 17189289.

    Article  CAS  PubMed  Google Scholar 

  25. Hempel N, Gamage N, Martin JL, McManus ME. Human cytosolic sulfotransferase SULT1A1. Int J Biochem Cell Biol 2007;39(4)685–9 PMID: 17110154.

    Article  CAS  PubMed  Google Scholar 

  26. Hildebrandt MA, Carrington DP, Thomae BA, Eckloff BW, Schaid DJ, Yee VC, et al. Genetic diversity and function in the human cytosolic sulfotransferases. Pharmacogenomics J 2007;7(2)133–43 PMID: 16801938.

    Article  CAS  PubMed  Google Scholar 

  27. Yanagisawa K, Sakakibara Y, Suiko M, Takami Y, Nakayama T, Nakajima H, et al. cDNA cloning, expression, and characterization of the human bifunctional ATP sulfurylase/adenosine 5’-phosphosulfate kinase enzyme. Biosci Biotechnol Biochem 1998;62(5)1037–40 PMID: 9648242.

    Article  CAS  PubMed  Google Scholar 

  28. Hui Y, Liu MC. Sulfation of ritodrine by the human cytosolic sulfotransferases (SULTs): effects of SULT1A3 genetic polymorphism. Eur J Pharmacol 2015;761:125–9 PMID: 25941087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74(12)5463–7 PMID: 271968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harper S, Speicher DW. Purification of proteins fused to glutathione S-transferase. Methods Mol Biol 2011;681:259–80 PMID: 20978970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shapiro AL, Viñuela E, Maizel Jr. JV. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 1967;28(5)815–20 PMID: 4861258.

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227(5259)680–5 PMID: 5432063.

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54 PMID: 942051.

    Article  CAS  PubMed  Google Scholar 

  34. Kurogi K, Chen M, Lee Y, Shi B, Yan T, Liu MY, et al. Sulfation of buprenorphine, pentazocine, and naloxone by human cytosolic sulfotransferases. Drug Metab Lett 2012;6(2)109–15 PMID: 22946908.

    Article  CAS  PubMed  Google Scholar 

  35. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, et al. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem 2003;278(9)7655–62 PMID: 12471039.

    Article  CAS  PubMed  Google Scholar 

  36. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M. The dimerization motif of cytosolic sulfotransferases. FEBS Lett 2001;490(1–2)39–43 PMID: 11172807.

    Article  CAS  PubMed  Google Scholar 

  37. Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015;30(1)3–20 PMID: 25760527.

    Article  CAS  PubMed  Google Scholar 

  38. Dunbrack Jr. RL. [150_TD$DIFF][125_TD$DIFF] Rotamer libraries in the 21st century. Curr Opin Struct Biol 2002;2(4)431–40 PMID: 12163064.

    Article  Google Scholar 

  39. Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MW. Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 2001;86(6)2734–42 PMID: 11397879.

    CAS  PubMed  Google Scholar 

  40. Vietri M, Pietrabissa A, Mosca F, Rane A, Pacific GM. Human adult and fetal liver sulphotransferases: inhibition by mefenamic acid and salicylic acid. Xenobiotica 2001;31(3)153–61 PMID: 11465392.

    Article  CAS  PubMed  Google Scholar 

  41. Stanley EL, Hume R, Coughtrie MW. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol Cell Endocrinol 2005;240(1–2)32–42 PMID: 16024168.

    Article  CAS  PubMed  Google Scholar 

  42. Patel M, Tang BK, Kalow W. Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics 1992;2(1)38–45 PMID: 1302042.

    Article  CAS  PubMed  Google Scholar 

  43. Court MH, Peter I, Hazarika S, Vasiadi M, Greenblatt DJ, Lee WM. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure. Drug Metab Dispos 2014;42(1)28–32 PMID: 24104197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, Clemens DL, Cole JR, Anderson RJ. Characterization of human liver thermostable phenol sulfotransferase (SULT1A1) allozymes with 3,3′,5-triiodothyronine as the substrate. J Endocrinol 2001;171(3)525–32 PMID:11739018.

    Article  CAS  PubMed  Google Scholar 

  45. Tabrett CA, Coughtrie MW. Phenol sulfotransferase 1A1 activity in human liver: kinetic properties, interindividual variation and re-evaluation of the suitability of 4-nitrophenol as a probe substrate. Biochem Pharmacol 2003;66(11)2089–97 PMID: 14609733.

    Article  CAS  PubMed  Google Scholar 

  46. Wang LQ, Lehmler HJ, Robertson LW, James MO. Polychlorobiphenylols are selective inhibitors of human phenol sulfotransferase 1A1 with 4-nitrophenol as a substrate. Chem Biol Interact 2006;159(3)235–46 PMID: 16413005.

    Article  CAS  PubMed  Google Scholar 

  47. Riches Z, Bloomer JC, Coughtrie MW. Comparison of 2-aminophenol and 4-nitrophenol as in vitro probe substrates for the major human hepatic sulfotransferase, SULT1A1, demonstrates improved selectivity with 2-aminophenol. Biochem Pharmacol 2007;74(2)352–8 PMID: 17506995.

    Article  CAS  PubMed  Google Scholar 

  48. Gamage NU, Tsvetanov S, Duggleby RG, McManus ME, Martin JL. The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates. J Biol Chem 2005;280(50)41482–6 PMID: 16221673.

    Article  CAS  PubMed  Google Scholar 

  49. Lu J, Li H, Zhang J, Li M, Liu MY, An X, et al. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 2010;396(2)429–34 PMID: 20417180.

    Article  CAS  PubMed  Google Scholar 

  50. Kakuta Y, Petrotchenko EV, Pedersen LC, Negishi M. The sulfuryl transfer mechanism. Crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis. J Biol Chem 1998;273(42)27325–30 PMID: 9765259.

    Article  CAS  PubMed  Google Scholar 

  51. Barnett AC, Tsvetanov S, Gamage N, Martin JL, Duggleby RG, McManus ME. Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3. J Biol Chem 2004;279(18)18799–805 PMID: 14871892.

    Article  CAS  PubMed  Google Scholar 

  52. Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol 2006;69(6)2084–92 PMID: 16517757.

    Article  CAS  PubMed  Google Scholar 

  53. Ozawa S, Shimizu M, Katoh T, Miyajima A, Ohno Y, Matsumoto Y, et al. Sulfating-activity and stability of cDNA-expressed allozymes of human phenol sulfotransferase, ST1A3*1 ((213) Arg) and ST1A3*2 ((213) his), both of which exist in Japanese as well as Caucasians. J Biochem 1999;126(2)271–7 PMID: 10423517.

    Article  CAS  PubMed  Google Scholar 

  54. Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014;30(6)884–6 PMID: 24162465.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Cheh Liu.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, M.I., Bairam, A.F., Gohal, S.A. et al. Effects of the human SULT1A1 polymorphisms on the sulfation of acetaminophen, O-desmethylnaproxen, and tapentadol. Pharmacol. Rep 71, 257–265 (2019). https://doi.org/10.1016/j.pharep.2018.12.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.12.001

Keywords

Navigation