Skip to main content
Log in

Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

In depression, excessive glucocorticoid action may cause maladaptive brain changes, including in the pathways controlling energy metabolism. Insulin and glucagon-like peptide-1 (GLP-1), besides regulation of glucose homeostasis, also possess neurotrophic properties. Current study was aimed at investigating the influence of prenatal stress (PS) on insulin, GLP-1 and their receptor (IR and GLP-1R) levels in the hypothalamus. GLP-1 and GLP-1R were assayed also in the hippocampus and frontal cortex — brain regions mainly affected in depression. The second objective was to determine the influence of exendin-4 and insulin on CRH promoter gene activity in in vitro conditions.

Methods

Adult male PS rats were subjected to acute stress and/or received orally glucose. Levels of hormones and their receptors were assayed with ELISA method. In vitro studies were performed on mHypoA-2/12 hypothalamic cell line, stably transfected with CRH promoter coupled with luciferase.

Results

PS has reduced GLP-1 and GLP-1R levels, attenuated glucose-induced increase in insulin concentration and increased the amount of phosphorylated IR in the hypothalamus of animals subjected to additional stress stimuli, and also decreased the GLP-1R level in the hippocampus. In vitro studies demonstrated that insulin is capable of increasing CRH promoter activity in the condition of stimulation of the cAMP/PKA pathway in the applied cellular model.

Conclusion

Prenatal stress may act as a preconditioning factor, affecting the concentrations of hormones such as insulin and GLP-1 in the hypothalamus in response to adverse stimuli. The decreased GLP-1R level in the hippocampus could be linked with the disturbances in neuronal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine monophosphate

CREB:

cAMP response elementbinding protein

CRH:

Corticotropinreleasing hormone

GLP-1glucagon:

like peptide-1

GLP-1R:

glucagonlike peptide-1 receptor

HPA:

hypothalamic — pituitary — adrenal axis

IR:

insulin receptor

PI3K:

phosphatidylinositol3-kinase

PKA:

protein kinase A

References

  1. Mainardi M, Fusco S, Grassi C. Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast 2015;2015:, doi:https://doi.org/10.1155/2015/657928.

    Article  Google Scholar 

  2. McEwen BS, Seeman T. Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Ann N Y Acad Sci 1999;896:30–47, doi:https://doi.org/10.1111/j.1749-6632.1999.tb08103.x.

    Article  CAS  Google Scholar 

  3. Magariños AM, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci U S A 2000;97:11056–61, doi:https://doi.org/10.1073/pnas.97.20.11056.

    Article  Google Scholar 

  4. Nyirenda MJ, Welberg LA, Seckl JR. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol 2001;170:653–60.

    Article  CAS  Google Scholar 

  5. Pan Y, Hong Y, Zhang QY, Kong LD. Impaired hypothalamic insulin signaling in CUMS rats: restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology 2013;38:122–34, doi:https://doi.org/10.1016/j.psyneuen.2012.05.007.

    Article  CAS  Google Scholar 

  6. Detka J, Kurek A, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B. Elevated brain glucose and glycogen concentrations in an animal model of depression. Neuroendocrinology 2014;100:178–90, doi:https://doi.org/10.1159/000368607.

    Article  CAS  Google Scholar 

  7. Detka J, Kurek A, Kucharczyk M, Głombik K, Basta-Kaim A, Kubera M, et al. Brain glucose metabolism in an animal model of depression. Neuroscience 2015;295:198–208, doi:https://doi.org/10.1016/j.neuroscience.2015.03.046.

    Article  CAS  Google Scholar 

  8. Sharma AN, Ligade SS, Sharma JN, Shukla P, Elased KM, Lucot JB. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats. Metab Brain Dis 2015;30:519–27, doi:https://doi.org/10.1007/s11011-014-9591-7.

    Article  CAS  Google Scholar 

  9. Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; Divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016;65:54–66, doi:https://doi.org/10.1016/j.psyneuen.2015.11.021.

    Article  CAS  Google Scholar 

  10. Gil-Lozano M, Romani-’Pérez M, Outeiriño-Iglesias V, Vigo E, González-Matías LC, Brubaker PL, et al. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats. Endocrinology 2014;155:2511–23, doi:https://doi.org/10.1210/en.2013-1718.

    Article  Google Scholar 

  11. Bohringer A, Schwabe L, Richter S, Schachinger H. Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinology 2008;33:1394–400, doi:https://doi.org/10.1016/j.psyneuen.2008.08.002.

    Article  CAS  Google Scholar 

  12. Budziszewska B, Jaworska-Feil L, Tetich M, Basta-Kaim A, Kubera M, Leśkiewicz M, et al. Effect of antidepressant drugs on the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells. Pharmacol Rep 2002;54:711–6.

    CAS  Google Scholar 

  13. Seasholtz A, Thompson R, Douglas J. Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Mol Endocrinol 1988;12:1311–9, doi:https://doi.org/10.1210/mend-2-12-1311.

    Article  Google Scholar 

  14. Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O. Prenatal stress in rats predicts immobility behavior in the forced swim test effects of a chronic treatment with tianeptine. Brain Res 2003;989:246–51.

    Article  CAS  Google Scholar 

  15. Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 1995;121:66–72.

    Article  CAS  Google Scholar 

  16. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Chem 1985;150:76–85.

    CAS  Google Scholar 

  17. Hampf M, Gossen M. A protocol for combined photinus and renilla luciferase quantification compatible with protein assays. Anal Biochem 2006;356:94–9, doi:https://doi.org/10.1016/j.ab.2006.04.046.

    Article  CAS  Google Scholar 

  18. Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Kubera M, Leśkiewicz M, Regulska M, et al. The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats. Psychoneuroendocrinology 2009;34:822–32, doi:https://doi.org/10.1016/j.psyneuen.2008.12.012.

    Article  Google Scholar 

  19. Zhang R, Packard BA, Tauchi M, D’Alessio DA, Herman JP. Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci U S A 2009;106:13636, doi:https://doi.org/10.1073/pnas.0907839106.

    CAS  Google Scholar 

  20. Mansur RB, Ahmed J, Cha DS, Woldeyohannes HO, Subramaniapillai M, Lovshin J, et al. Liraglutide promotes improvements in objective measures of cognitive dysfunction in individuals with mood disorders: A pilot, open-label study. J Affect Disord 2017;207:114–20, doi:https://doi.org/10.1016/j.jad.2016.09.056.

    Article  CAS  Google Scholar 

  21. McClean PL, Gault VA, Harriott P, Hölscher C. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur J Pharmacol 2010;630:158–62, doi:https://doi.org/10.1016/j.ejphar.2009.12.023.

    Article  CAS  Google Scholar 

  22. Rebosio C, Balbi M, Passalacqua M, Ricciarelli R, Fedele E. Presynaptic GLP-1 receptors enhance the depolarization-evoked release of glutamate and GABA in the mouse cortex and hippocampus. Biofactors 2018;44:148–57, doi:https://doi.org/10.1002/biof.1406.

    Article  CAS  Google Scholar 

  23. Gumuslu E, Mutlu O, Celikyurt IK, Ulak G. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol 2016;30:376–84, doi:https://doi.org/10.1111/fcp.12192.

    Article  CAS  Google Scholar 

  24. Kucharczyk M, Kurek A, Pomierny B, Detka J, Papp M, Tota K. The reduced level of growth factors in an animal model of depression is accompanied by regulated necrosis in the frontal cortex but not in the hippocampus. Psychoneuroendocrinology 2018;94:121–33, doi:https://doi.org/10.1016/j.psyneuen.2018.05.008.

    Article  CAS  Google Scholar 

  25. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002;8:1376–82, doi: https://doi.org/10.1038/nm798.

    Article  CAS  Google Scholar 

  26. Guardiola-Diaz HM, Kolinske JS, Gates LH, Seasholtz AF. Negative glucorticoid regulation of cyclic adenosine 3′, 5′-monophosphate-stimulated corticotropin-releasing hormone-reporter expression in AtT-20 cells. Mol Endocrinol 1996;10:317–29, doi:https://doi.org/10.1210/mend.10.3.8833660.

    CAS  Google Scholar 

  27. Kageyama K, Yamagata S, Akimoto K, Sugiyama A, Murasawa S, Suda T. Action of glucagon-like peptide 1 and glucose levels on corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells. Mol Cell Endocrinol 2012;362:221–6, doi:https://doi.org/10.1016/j.mce.2012.06.023.

    Article  CAS  Google Scholar 

  28. Ahmad F, Lindh R, Tang Y, Weston M, Degerman E, Manganiello VC. Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem J 2007;404:257–68, doi:https://doi.org/10.1042/BJ20060960.

    Article  CAS  Google Scholar 

  29. Fruehwald-Schultes B, Kern W, Bong W, Wellhoener P, Kerner W, Born J, et al. Supraphysiological hyperinsulinemia acutely increases hypothalamic-pituitary-adrenal secretory activity in humans. J Clin Endocrinol Metab 1999;84:3041–6, doi:https://doi.org/10.1210/jcem.84.9.5953.

    Article  CAS  Google Scholar 

  30. Fruehwald-Schultes B, Kern W, Born J, Fehm HL, Peters A. Hyperinsulinemia causes activation of the hypothalamus-pituitary-adrenal axis in humans. Int J Obes Relat Metab Disord 2001;25(Suppl. 1):S38–40, doi:https://doi.org/10.1038/sj.ijo.0801695.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Detka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detka, J., Ślusarczyk, J., Kurek, A. et al. Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line. Pharmacol. Rep 71, 338–346 (2019). https://doi.org/10.1016/j.pharep.2018.11.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.11.001

Keywords

Navigation