Skip to main content

Advertisement

Log in

Involvement of vascular endothelial growth factor (VEGF) and mitogen-activated protein kinases (MAPK) in the mechanism of neuroleptic drugs

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Recent evidence suggests that the mitogen activated protein kinase (MAPK)-associated signaling pathway in the frontal cortical areas demonstrates abnormal activity in cases of schizophrenia. Moreover, schizophrenia patients often display alterations in the regional cellular energy metabolism and blood flow of the brain; these are shown to parallel changes in angiogenesis primarily mediated by vascular endothelial growth factor (VEGF).

Methods

The present study examines the differential effects of time-dependent treatment with haloperidol, olanzapine and amisulpride (20 μM) on VEGF and MAPK mRNA expression and VEGF level, using the T98 cell line as an example of nerve cells. For the purposes of comparison, the effect of neuroprotective pituitary adenylate cyclase-activating polypeptide (PACAP) on the expression of VEGF mRNA and secretion were also evaluated in this cell model.

Results

RT-PCR analysis revealed that all the tested neuroleptics increased VEGF mRNA expression after 72-h incubation; however, only haloperidol and olanzapine also increased the level of VEGF detected by ELISA, and they demonstrated significantly stronger effects than PACAP. Haloperidol and olanzapine, but not amisulpride, decreased MAPK14 mRNA expression in T98G cells after 72-h incubation.

Conclusion

The obtained results suggest that haloperidol and olanzapine can trigger the MAPK and VEGF signaling pathway, which may contribute to their neuroprotective mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Funk A.J., McCullumsmith RE, Haroutunian V, Meador-Woodruff JH. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology 2012;37:896–905.

    CAS  PubMed  Google Scholar 

  2. Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 2005;6:1–17.

    Google Scholar 

  3. Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 1995;7:240–76.

    CAS  PubMed  Google Scholar 

  4. Fulzele S, Pillai A. Decreased VEGF mRNA expression in the dorsolateral prefrontal cortex of schizophrenia subjects. Schizophr Res 2009;115:372–3.

    PubMed  Google Scholar 

  5. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature 2005;438:954–9.

    CAS  PubMed  Google Scholar 

  6. Howell KR, Kutiyanawalla A, Pillai A. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex. PLoS One 2011;6:e20198.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee BH, Hong JP, Hwang JA, Ham BJ, Na KS, Kim WJ, et al. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res 2015;228:95–9.

    CAS  PubMed  Google Scholar 

  8. de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the mechanism of action of aripiprazole: translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 2015;9:773–99.

    Google Scholar 

  9. Dold M, Samara MT, Li C, Tardy M, Leucht S. Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Database Syst Rev 2015;1:1–200, doi:https://doi.org/10.1002/14651858.CD009831.

    Google Scholar 

  10. Kusumi I, Boku S, Takahashi Y. Psychopharmacology of atypical antipsychotic drugs: from the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin Neurosci 2015;69:243–58.

    CAS  PubMed  Google Scholar 

  11. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002;47:27–38.

    PubMed  Google Scholar 

  12. Jóźwiak-Bębenista M, Kowalczyk E. Neuroleptic drugs and PACAP differentially affect the mRNA expression of genes encoding PAC1/VPAC type receptors. Neurochem Res 2017;42:943–52.

    PubMed  Google Scholar 

  13. Pillai A, Mahadik SP. Differential effects of haloperidol and olanzapine on levels of vascular endothelial growth factor and angiogenesis in rat hippocampus. Schizophr Res 2006;87:48–59.

    PubMed  Google Scholar 

  14. Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF madame curie bioscience database. Landes Bioscience 2011, doi:https://doi.org/10.1007/978-1-4419-9148-5_13.

    Google Scholar 

  15. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, et al. Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 2014;214(144):294–303.

    Google Scholar 

  16. de Joannon AC, Mancini F, Landolfi C, Soldo L, Leta A, Ruggieri A, et al. Adenosine triphosphate affects interleukin-1beta release by T98G glioblastoma cells through a purinoceptorindependent mechanism. Neurosci Lett 2000;285:218–22.

    PubMed  Google Scholar 

  17. Cabezas R, Avila MF, González J, El-Bachá RS, Barreto GE. PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 2015;27:355–67.

    CAS  PubMed  Google Scholar 

  18. Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabeitia E, Del Rio J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 2001;12:919–23.

    CAS  PubMed  Google Scholar 

  19. Jóźwiak-Bębenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep 2015;67:332–8.

    PubMed  Google Scholar 

  20. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3:1101–8.

    CAS  PubMed  Google Scholar 

  21. Brinholi FF, Farias CC, Bonifácio KL, Higachi L, Casagrande R, Moreira EG, et al. Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed Pharmacother 2016;81:411–5.

    CAS  PubMed  Google Scholar 

  22. Jóźwiak-Bębenista M, Jasińska-Stroschein M, Kowalczyk E. The differential effects of neuroleptic drugs and PACAP on the expression of BDNF mRNA and protein in a human glioblastoma cell line. Acta Neurobiol Exp (Wars) 2017;77:205–13.

    Google Scholar 

  23. Lu XH, Dwyer DS. Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 2005;27:43–64.

    CAS  PubMed  Google Scholar 

  24. Shin H, Song JH. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells. Eur J Pharmacol 2014;738:256–62.

    CAS  PubMed  Google Scholar 

  25. Shao Z, Dyck LE, Wang H, Li XM. Antipsychotic drugs cause glial cell line-derived neurotrophic factor secretion from C6 glioma cells. J Psychiatry Neurosci 2006;31:32–7.

    PubMed  PubMed Central  Google Scholar 

  26. Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000;60:783–94.

    CAS  PubMed  Google Scholar 

  27. Zabłocka A, Mitkiewicz M, Macała J, Janusz M. Neurotrophic activity of cultured cell line U87 is up-regulated by proline-rich polypeptide complex and its constituent nonapeptide. Cell Mol Neurobiol 2015;35:977–86.

    PubMed  PubMed Central  Google Scholar 

  28. Weathers SP, de Groot J. VEGF manipulation in glioblastoma. Oncology (Williston Park) 2015;29:720–7.

    Google Scholar 

  29. Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A. Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 2010;260:151–62.

    PubMed  Google Scholar 

  30. Ogata K, Shintani N, Hayata-Takano A, Kamo T, Higashi S, Seiriki K, et al. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF. PLoS One 2015;10:e0120526.

    PubMed  PubMed Central  Google Scholar 

  31. Reglodi D, Maasz G, Pirger Z, Rivnyak A, Balogh D, Jungling A, et al. Neurochemical changes in different brain regions induced by PACAP — relations to neuroprotection. Springerplus 2015;4:L56.

    PubMed  PubMed Central  Google Scholar 

  32. Maugeri G, D’Amico AG, Saccone S, Federico C, Cavallaro S, D’Agata V. PACAP and VIP inhibit HIF-1α-mediated VEGF expression in a model of diabetic macular edema. J Cell Physiol 2017;232:1209–15.

    CAS  PubMed  Google Scholar 

  33. Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, et al. Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett 2012;523:93–8.

    CAS  PubMed  Google Scholar 

  34. Chlan-Fourney J, Ashe P, Nylen K, Juorio AV, Li XM. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002;954:11–20.

    CAS  PubMed  Google Scholar 

  35. Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 2000;28:67–77.

    Google Scholar 

  36. Noh JS, Kang HJ, Kim EY, Sohn S, Chung YK, Kim SU, et al. Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH(2)-terminal protein kinase. J Neurochem 2000;75:2327–34.

    CAS  PubMed  Google Scholar 

  37. Nordenberg J, Fenig E, Landau M, Weizman R, Weizman A. Effects of psychotropic drugs on cell proliferation and differentiation. Biochem Pharmacol 1999;58:1229–36.

    CAS  PubMed  Google Scholar 

  38. Loeffler S, Fehsel K, Krieger K, Henning U, Klimke A. Inhibition of p38-mitogen-activated protein kinase may protect from clozapine-induced agranulocytosis. World J Biol Psychiatry 2004;5:54–5.

    PubMed  Google Scholar 

  39. Barak Y, Achiron A, Mandel M, Mirecki I, Aizenberg D. Reduced cancer incidence among patients with schizophrenia. Cancer 2005;104:2817–21.

    PubMed  Google Scholar 

  40. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 2001;7:569–74.

    CAS  PubMed  Google Scholar 

  41. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401–10.

    CAS  PubMed  Google Scholar 

  42. Asada M, Ebihara S, Numachi Y, Okazaki T, Yamanda S, Ikeda K, et al. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int J Cancer 2008;123:511–8.

    CAS  PubMed  Google Scholar 

  43. Gagliano T, Filieri C, Minoia M, Buratto M, Tagliati F, Ambrosio MR, et al. Cabergoline reduces cell viability in non functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Pituitary 2013;16:91–100.

    CAS  PubMed  Google Scholar 

  44. Yoshino Y, Aoyagi M, Tamaki M, Duan L, Morimoto T, Ohno K. Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells. Int J Oncol 2006;29:981–7.

    CAS  PubMed  Google Scholar 

  45. Fond G, Macgregor A, Attal J, Larue A, Brittner M, Ducasse D, et al. Antipsychotic drugs: pro-cancer or anti-cancer? A systemic review. Med Hypotheses 2012;79:38–42.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Jóźwiak-Bębenista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jóźwiak-Bębenista, M., Jasińska-Stroschein, M. & Kowalczyk, E. Involvement of vascular endothelial growth factor (VEGF) and mitogen-activated protein kinases (MAPK) in the mechanism of neuroleptic drugs. Pharmacol. Rep 70, 1032–1039 (2018). https://doi.org/10.1016/j.pharep.2018.05.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.05.005

Keywords

Navigation