Skip to main content

Advertisement

Log in

Clobenpropit, a histamine H3 receptor antagonist/inverse agonist, inhibits [3H]-dopamine uptake by human neuroblastoma SH-SY5Y cells and rat brain synaptosomes

  • Original Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Clobenpropit, a potent antagonist/inverse agonist at the histamine H3 receptor (H3 R), reduced the cytotoxic action of 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells transfected with the human H3 R. We therefore set out to study whether this effect involved a receptor-independent action on dopamine transport.

Methods

The uptake of [3H]-dopamine was assayed in SH-SY5Y cells and rat striatal or cerebro-cortical isolated nerve terminals (synaptosomes). Clobenpropit binding to the human norepinephrine (NET) and dopamine (DAT) transporters was analyzed by molecular modeling.

Results

In SH-SY5Y cells, [3H]-dopamine uptake was inhibited by desipramine (selective NET inhibitor), GBR-12909 (selective DAT inhibitor), and fluoxetine (selective inhibitor of the serotonin transporter, SERT) with IC50 values 37, 537, and 2800 nM, respectively. The potency rank order indicates that [3H]-dopamine uptake is primarily performed by NET. Clobenpropit inhibited [3H]-dopamine uptake (maximum inhibition 82.7 ± 2.8%, IC50 490 nM), and the effect was reproduced by the H3 R antagonist/inverse agonist iodophenpropit, but not by the agonists R -α-methylhistamine and immepip or the antagonists/inverse agonists ciproxifan and A-331440. Clobenpropit also inhibited [3H]-dopamine uptake by rat striatal and cerebro-cortical synaptosomes (−54.6 ± 11.3% and −46.3 ± 9.6%, respectively, at 10 μM). Modeling of the human NET and DAT obtained by homology from the crystal of Drosophila melanogaster DAT showed that clobenpropit can bind to a site also recognized in both transporters by nisoxetine, a potent NET inhibitor.

Conclusion

These data indicate a direct inhibitory effect of clobenpropit on catecholamine transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

DAT:

dopamine transporter

H3 R:

histamine H3 receptor

IC50:

half maximal inhibitory concentration

Ki:

inhibition constant

NET:

norepinephrine transporter

pIC50:

-Log10 IC50

RAMH:

R-α-methylhistamine

SERT:

serotonin transporter

References

  1. Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model: Parkinson’s disease. Trends Mol Med 2003;9(8):360–5.

    Article  CAS  PubMed  Google Scholar 

  2. Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 2013;1078:9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012;279(7):1156–66.

    Article  CAS  PubMed  Google Scholar 

  4. Tieu K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011;1(1):a009316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tiffany-Castiglioni E, Saneto RP, Proctor PH, Perez-Polo JR. Participation of active oxygen species in 6-hydroxydopamine toxicity to a human neuroblastoma cell line. Biochem Pharmacol 1982;31(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  6. Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013;14(7):472–87.

    Article  CAS  PubMed  Google Scholar 

  7. Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, et al. Detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience 2002;114(1):173–93.

    Article  CAS  PubMed  Google Scholar 

  8. Arias-Montaño JA, Floran B, Garcia M, Aceves J, Young JM. Histamine H3 receptor-mediated inhibition of depolarization-induced, dopamine D1 receptor-dependent release of [3]-gamma-aminobutyric acid from rat striatal slices. Br J Pharmacol 2001;133(1):165–71.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sánchez-Lemus E, Arias Montaño JA. Histamine H3 receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci Lett 2004;364(3):179–84.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrada C, Ferré S, Casadó V, Cortés A, Justinova Z, Barnes C, et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology 2008;55(2):190–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol 2009;157(1):64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mariottini C, Scartbelli T, Bongers G, Arrigucci S, Nosi D, Leurs R, et al. Activation of the histaminergic H3 receptor induces phosphorylation of the Akt/GSK-3 beta pathway in cultures cortical neurons and protects against neurotoxic insults. J Neurochem 2009;110(5):1468–78.

    Article  CAS  Google Scholar 

  13. Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dpamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 2002;22(2):389–95.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meyers B, Kritzer MF. In vitro binding assays using 3H nisoxetine and 3H WIN 35,428 reveal selective effects of gonadectomy and hormone replacement in adult male rats on norepinephrine but not dopamine transportersites in the cerebral cortex. Neuroscience 2009;159(1):271–82.

    Article  CAS  PubMed  Google Scholar 

  15. Gray EG, Whittaker VP. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 1962;96(Pt. 1):79–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Garduño-Torres B, Treviño M, Gutiérrez R, Arias-Montaño JA. Presynaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology 2007;52(2):527–35.

    Article  PubMed  CAS  Google Scholar 

  17. Penmsata A, Wang KH, Gouaux E. X-ray structure of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nature Struct Mol Biol 2015;22(6):506–8.

    Article  CAS  Google Scholar 

  18. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011;101(10):2525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996;14(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clin Pharmacol Ther 2016;100(5):489–99.

    Article  CAS  PubMed  Google Scholar 

  22. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24(7):1227–51.

    Article  CAS  PubMed  Google Scholar 

  23. Gu H, Wall SC, Rudnick G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 1994;269(10):7124–30.

    CAS  PubMed  Google Scholar 

  24. Park JW, Chung HW, Lee EJ, Jung KH, Paik JY, Lee KH. β2-Adrenergic agonists including xylazine and dexmedetomidine inhibit norepinephrine transporter function in SK-N-SH cells. Neurosci Lett 2013;541:184–9.

    Article  CAS  PubMed  Google Scholar 

  25. Buck KJ, Amara S. Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci USA 1994;91(26):12584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buck KJ, Amara SG. Structural domains of catecholamine transporter chimeras involved in selective inhibition by antidepressants and psychomotor stimulants. Mol Pharmacol 1995;48(6):1030–7.

    CAS  PubMed  Google Scholar 

  27. Midde NM, Gomez AM, Zhu J. HIV-1 Tat protein decreases dopamine transporter cell surface expression and vesicular monoamine transporter-2 function in rat striatal synaptosomes. J Neuroimmune Pharmacol 2012;7(3):629–39.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lopes FM, da Motta LL, De Bastiani MA, Pfaffenseller B, Aguiar BW, de Souza LF, Zanatta G, Vargas DM, Schönhofen P, Londero GF, de Medeiros LM, Freire VN, Dafre AL, Castro MA, Parsons RB, Klamt F. RA differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Neurotox Res 2017;31(4):545–59.

    Article  CAS  PubMed  Google Scholar 

  29. Leurs R, Bakker RA, Timmerman H, de Esch IJ. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 2005;4(2):107–20.

    Article  CAS  PubMed  Google Scholar 

  30. Esbenshade TA, Krueger KM, Miller TR, Kang CH, Denny LI, Witte DG, et al. Two novel and selective nonimidazole histamine H3 receptor antagonists A-304121 and A-317920: I. In vitro pharmacological effects. J Pharmacol Exp Ther 2003;305(3):887–96.

    Article  CAS  PubMed  Google Scholar 

  31. Celanire S, Wijtmans M, Talaga P, Leurs R, de Esch IJ. Keynote review: histamine H3 receptor antagonists reach out for the clinic. Drug Discov Today 2005;10(23–24):1613–27.

    Article  CAS  PubMed  Google Scholar 

  32. Hansen KB, Mullasseril P, Dawit S, Kurtkaya NL, Yuan H, Vance KM, et al. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists. J Pharmacol Exp Ther 2010;333(3):650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang R, Hey JA, Aslanian R, Rizzo CA. Coordination of histamine H3 receptor antagonists with human adrenal cytochrome P450 enzymes. Pharmacology 2002;66(3):128–35.

    Article  CAS  PubMed  Google Scholar 

  34. Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 2016;6(3):123–48.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nieto-Alamilla G, Escamilla-Sánchez J, González-Pantoja R, Arias-Montaño JA. Inhibition of depolarization-evoked [3H]-dopamine release by the activation of the human histamine H3 receptors of 445 and 365 amino acids expressed in human neuroblastoma SHSY-5Y cells. Inflamm Res 2012;61(Suppl 2):S37–87, doi:http://dx.doi.org/10.1007/s00011-012-0531-x.

    Google Scholar 

  36. Morales-Figueroa GE, Márquez-Gómez R, González-Pantoja R, Escamilla-Sánchez J, Arias-Montaño JA. Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes. ACS Chem Neurosci 2014;5(8):637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang CI, Shaikh NH, Ramu S, Lewis RJ. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol Pharmacol 2012;82(5):898–909.

    Article  CAS  PubMed  Google Scholar 

  38. Munzar P, Tanda G, Justinova Z, Goldberg SR. Histamine H3 receptor antagonist potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology 2004;4(4):705–17.

    Article  CAS  Google Scholar 

  39. Femenía T, Magara S, DuPont CM, Lindskog M. Hippocampal-dependent antidepressant action of the H3 receptor antagonist clobenpropit in a rat model of depression. Int J Neuropsychopharmacol 201518(9), doi:http://dx.doi.org/10.1093/ijnp/pyv032 pii: pyv032.

  40. Mahmood D, Khanam R, Pillai KK, Akhtar M. Protective effects of histamine H3-receptor ligands in schizophrenic behaviors in experimental models. Pharmacol Rep 2012;64(1):191–204.

    Article  CAS  PubMed  Google Scholar 

  41. Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J Basic Clin Physiol Pharmacol 2016;27(5):463–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Antonio Arias-Montaño.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mena-Avila, E., Márquez-Gómez, R., Aquino-Miranda, G. et al. Clobenpropit, a histamine H3 receptor antagonist/inverse agonist, inhibits [3H]-dopamine uptake by human neuroblastoma SH-SY5Y cells and rat brain synaptosomes. Pharmacol. Rep 70, 146–155 (2018). https://doi.org/10.1016/j.pharep.2017.08.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.08.007

Keywords

Navigation