Skip to main content

Advertisement

Log in

Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus is associated with abnormal bone health and an increased risk of fracture even though patients have normal or higher BMD. The mechanisms behind diabetes mellitus- induced various skeletal disorders remain unclear. Anti-diabetic drugs may have negative or positive impact on bone metabolism. For instance, thiazolidinediones increases the bone loss and risk of fracture possibly through PPARγ activation in bone marrow cells and hamper osteoblastogenesis via decreasing Runx2 transcription factor, IGF-1 and Wnt signalling pathways. In contrast, metformin and sulfonylureas have a neutral or positive effect on bone health and reduced risk of fracture. Results from the preclinical and clinical studies convey conflicting findings over insulin safety profile on bone health. Incretin-based therapy (GLP-1 receptor agonist and DPP-4 inhibitors) and SGLT2 inhibitors are currently marketed anti- diabetic drugs. While evidence from animal studies suggest that incretin-based therapy have anabolic effect on bone, limited clinical data of DPP-4 inhibitors and GLP-1 receptor agonist indicated a neutral effect on the bone health and risk of fracture. SGLT2 inhibitors may cause bone loss or increase fracture risk due to altered calcium, phosphate and sodium concentration. Therefore, safety concerns of anti-diabetic drugs are crucial for the management of diabetes mellitus. In this review, analysis of the available evidence for effect of anti-diabetic drugs on the bone metabolism and fracture risk in diabetes mellitus is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 2009;32:2263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int 2007;18:427–44.

    Article  CAS  PubMed  Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas. 7th edn. Brussels, Belgium: International Diabetes Federation; 2015 http://www.diabetesatlas.org (Accessed 2 January 2017).

    Google Scholar 

  4. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos 2013;8:1–115.

    Article  Google Scholar 

  5. Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 2014;57:2057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001;24:1192–7.

    Article  CAS  PubMed  Google Scholar 

  7. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castaño-Betancourt MC, Estrada K, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control the Rotterdam Study. Diabetes Care 2013;36:1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 2006;91:3355–63.

    Article  CAS  PubMed  Google Scholar 

  9. Bonfanti R, Mora S, Prinster C, Bognetti E, Meschi F, Puzzovio M, et al. Bone modeling indexes at onset and during the first year of follow-Up in insulin-dependent diabetic children. Calcif Tissue Int 1997;60:397–400.

    Article  CAS  PubMed  Google Scholar 

  10. Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, et al. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism 2011;60:243–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ellegaard M, Jørgensen N, Schwarz P. Parathyroid hormone and bone healing. Calcif Tissue Int 2010;87:1–13.

    Article  CAS  PubMed  Google Scholar 

  12. McCabe L, Zhang J, Raehtz S. Understanding the skeletal pathology of type 1 and 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 2011;21:187–206.

    Article  CAS  PubMed  Google Scholar 

  13. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 2007;40:345–53.

    Article  CAS  PubMed  Google Scholar 

  14. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 2006;17:1514–23.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 2009;24:702–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest 2000;23:295–303.

    Article  CAS  PubMed  Google Scholar 

  17. Ardawi MS, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 2013;56:355–62.

    Article  CAS  PubMed  Google Scholar 

  18. Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012;97:3240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-Fat diet/low-dose streptozotocin-induced type 2 diabetes in rats impacts osteogenesis and wnt signaling in bone marrow stromal cells. PLoS One 2015;10:e0136390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. He H, Liu R, Desta T, Leone C, Gerstenfeld LC, Graves DT. Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology 2004;145:447–52.

    Article  CAS  PubMed  Google Scholar 

  21. Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, et al. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 2004;301:119–27.

    Article  CAS  PubMed  Google Scholar 

  22. Takizawa M, Suzuki K, Matsubayashi T, Kikuyama M, Suzuki H, Takahashi K, et al. Increased bone resorption may play a crucial role in the occurrence of osteopenia in patients with type 2 diabetes: possible involvement of accelerated polyol pathway in its pathogenesis. Diabetes Res Clin Pract 2008;82:119–26.

    Article  CAS  PubMed  Google Scholar 

  23. Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients-a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 2014;25:1697–708.

    Article  CAS  PubMed  Google Scholar 

  24. Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev 2014;30:531–42.

    Article  PubMed  Google Scholar 

  25. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 2012;27:319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007;166:495–505.

    Article  PubMed  Google Scholar 

  27. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010;95:5045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 2014;29:787–95.

    Article  PubMed  Google Scholar 

  29. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab 2007;92:2017–29.

    Article  CAS  PubMed  Google Scholar 

  30. Nyomba BL, Verhaeghe J, Thomasset M, Lissens W, Bouillon R. Bone mineral homeostasis in spontaneously diabetic BB rats: I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption. Endocrinology 1989;124:565–72.

    Article  CAS  PubMed  Google Scholar 

  31. Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014;16:159–69.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 2006;17:495–500.

    Article  PubMed  Google Scholar 

  33. Driessen JH, Henry RM, van Onzenoort HA, Lalmohamed A, Burden AM, Prieto-Alhambra D, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis. Calcif Tissue Int 2015; 1–9.

  34. Cefalu WT, Riddle MC. SGLT2 inhibitors: the latest new kids on the block!. Diabetes Care 2015;38:352–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thrailkill KM, Bunn RC, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone 2015.

  36. Kwon H. Canaglifozin: clinical efficacy and safety. Endocrinologic and Metabolic Drugs Advisory Committee Meeting. 2013 https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterial/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM336234.pdf (Accessed 2 January 2017).

  37. Tirmenstein M, Dorr TE, Janovitz EB, Hagan D, Abell LM, Onorato JM, et al. Nonclinical toxicology assessments support the chronic safety of dapagliflozin, a first-in-class sodium-glucose cotransporter 2 inhibitor. Int J Toxicol 2013 1091581813505331.

  38. Yokono M, Takasu T, Hayashizaki Y, Mitsuoka K, Kihara R, Muramatsu Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol 2014;727:66–74.

    Article  CAS  PubMed  Google Scholar 

  39. Nauck MA, Del Prato S, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011;34:2015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ljunggren O, Bolinder J, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 2012;14:990–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014;85:962–71.

    Article  CAS  PubMed  Google Scholar 

  42. Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, et al. Longöterm efficacy and safety of canagliflozin over 104 weeks in patients aged 55–80 years with type 2 diabetes. Diabetes Obes Metab 2015;17:294–303.

    Article  CAS  PubMed  Google Scholar 

  43. Ayus JC, Negri AL, Kalantar-Zadeh K, Moritz ML. Is chronic hyponatremia a novel risk factor for hip fracture in the elderly. Nephrol Dial Transplant 2012;27:3725–31.

    Article  PubMed  Google Scholar 

  44. Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001;288:275–9.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 2015;3:8–10.

    Article  CAS  PubMed  Google Scholar 

  46. Rizos CV, Kei A, Elisaf MS. The current role of thiazolidinediones in diabetes management. Arch Toxicol 2016;1–21.

  47. Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone interim report of a longitudinal cohort study. Diabetes Care 2011;34:916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. US Food and Drug Administration FDA significantly restricts access to the diabetes drug Avandia. 2010. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm226956.htm (Accessed 2 January 2017).

  49. Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B. PPARg nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem 2009;106:232–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen HH, Horng MH, Yeh SY, Lin IC, Yeh CJ, Muo CH, et al. Glycemic control with thiazolidinedione is associated with fracture of T2DM patients. PLoS One 2015;10:e0135530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Schwartz AV, Sellmeyer DE. Thiazolidinedione therapy gets complicated: is bone loss the price of improved insulin resistance. Diabetes Care 2007;30:1670–1.

    Article  CAS  PubMed  Google Scholar 

  52. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005;146:1226–35.

    Article  CAS  PubMed  Google Scholar 

  53. Seth A, Sy V, Pareek A, Suwandhi P, Rosenwaks Z, Poretsky L, et al. Thiazolidinediones (TZDs) affect osteoblast viability and biomarkers independently of the TZD effects on aromatase. Horm Metab Res 2013;45:1–8.

    CAS  PubMed  Google Scholar 

  54. Cho E-S, Kim M-K, Son Y-O, Lee K-S, Park S-M, Lee J-C. The effects of rosiglitazone on osteoblastic differentiation, osteoclast formation and bone resorption. Mol Cells 2012;33:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007;13:1496–503.

    Article  CAS  PubMed  Google Scholar 

  56. Wei W, Wang X, Yang M, Smith LC, Dechow PC, Wan Y. PGC1b mediates PPARg activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 2010;11:503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fukunaga T, Zou W, Rohatgi N, Colca JR, Teitelbaum SL. An insulin-sensitizing thiazolidinedione, which minimally activates PPARγ, does not cause bone loss. J Bone Miner Res 2015;30:508–15.

    Article  CAS  Google Scholar 

  58. Sottile V, Seuwen K, Kneissel M. Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 2004;75:329–37.

    Article  CAS  PubMed  Google Scholar 

  59. Huang S, Syed F, Suva L, Lecka-Czernik B. Estrogen deficiency augments TZD-induced bone loss and fat accumulation in bone in vivo. J Bone Miner Res 2009;24.

  60. Smith SY, Samadfam R, Chouinard L, Awori M, Benardeau A, Bauss F, et al. Effects of pioglitazone and fenofibrate co-administration on bone biomechanics and histomorphometry in ovariectomized rats. J Bone Miner Metab 2015;33:625–41.

    Article  CAS  PubMed  Google Scholar 

  61. Samadfam R, Awori M, Bénardeau A, Bauss F, Sebokova E, Wright M, et al. Combination treatment with pioglitazone and fenofibrate attenuates pioglitazone-mediated acceleration of bone loss in ovariectomized rats. J Endocrinol 2012;212:179–86.

    Article  CAS  PubMed  Google Scholar 

  62. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 2007;148:2669–80.

    Article  CAS  PubMed  Google Scholar 

  63. Rzonca S, Suva L, Gaddy D, Montague D, Lecka-Czernik B. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 2004;145:401–6.

    Article  CAS  PubMed  Google Scholar 

  64. Akune T, Ohba S, Kamekura S, Yamaguchi M, U-i Chung, Kubota N, et al. PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Diabetes Investig 2004;113:846.

    CAS  Google Scholar 

  65. Devesh C, Kritika M, Anroop N, Kumar S, Sumeet G. Spirulina reverses histomorphological changes in diabetic osteoporosis in pioglitazone treated rats. J Diabetes Metab S 2012;2–7.

  66. Mieczkowska A, Baslé MF, Chappard D, Mabilleau G. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem 2012;287:23517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mabilleau G, Mieczkowska A, Edmonds M. Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med 2010;27:925–32.

    Article  CAS  PubMed  Google Scholar 

  68. Takada I, Kouzmenko AP, Kato S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009;5:442–7.

    Article  CAS  PubMed  Google Scholar 

  69. Gustafson B, Eliasson B, Smith U. Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia 2010;53:536–40.

    Article  CAS  PubMed  Google Scholar 

  70. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, The Giorgino F. GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 2010;205:201–10.

    Article  CAS  PubMed  Google Scholar 

  71. Yakar S, Courtland HW, Clemmons D. IGF-1 and bone New discoveries from mouse models. J Bone Miner Res 2010;25:2543–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Guerra-Menéndez L, Sádaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortázar AR, et al. IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med 2013;11:271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 2010;95:134–42.

    Article  CAS  PubMed  Google Scholar 

  74. Berberoglu Z, Yazici AC, Demirag NG. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study. Clin Endocrinol (Oxf) 2010;73:305–12.

    Article  CAS  Google Scholar 

  75. Berberoglu Z, Gursoy A, Bayraktar N, Yazici AC, Bascil Tutuncu N, Guvener Demirag N. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 2007;92:3523–30.

    Article  CAS  PubMed  Google Scholar 

  76. Xiao W-h, Wang Y-r, Hou W-f, Xie C, Wang H-n, Hong T-p, et al. The effects of pioglitazone on biochemical markers of bone turnover in the patients with type 2 diabetes. Int J Endocrinol 2013;2013:290734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Glintborg D, Andersen M, Hagen C, Heickendorff L, Hermann AP. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab 2008;93:1696–701.

    Article  CAS  PubMed  Google Scholar 

  78. Bilezikian JP, Josse RG, Eastell R, Lewiecki EM, Miller CG, Wooddell M, et al. Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 2013;98:1519–28.

    Article  CAS  PubMed  Google Scholar 

  79. Bone HG, Lindsay R, McClung MR, Perez AT, Raanan MG, Spanheimer RG. Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2013;98:4691–701.

    Article  CAS  PubMed  Google Scholar 

  80. Grey A, Bolland M, Fenwick S, Horne A, Gamble G, Drury PL, et al. The skeletal effects of pioglitazone in type 2 diabetes or impaired glucose tolerance: a randomized controlled trial. Eur J Endocrinol 2014;170:255–62.

    Article  CAS  PubMed  Google Scholar 

  81. Li R, Xu W, Luo S, Xu H, Tong G, Zeng L, et al. Effect of exenatide, insulin and pioglitazone on bone metabolism in patients with newly diagnosed type 2 diabetes. Acta Diabetol 2015;52:1083–91.

    Article  CAS  PubMed  Google Scholar 

  82. Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia 2015;58:2238–46.

    Article  CAS  PubMed  Google Scholar 

  83. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427–43.

    Article  CAS  PubMed  Google Scholar 

  84. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 2008;31:845–51.

    Article  CAS  PubMed  Google Scholar 

  85. Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM. Thiazolidinediones and fractures in men and women. Arch Intern Med 2009;169:1395–402.

    Article  CAS  PubMed  Google Scholar 

  86. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010;95:592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu Z-N, Jiang Y-F, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 2014;68:115–23.

    Article  CAS  PubMed  Google Scholar 

  88. Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013;123:2764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    Article  CAS  PubMed  Google Scholar 

  90. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti M, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 2010;25:211–21.

    Article  CAS  PubMed  Google Scholar 

  91. Jang WG, Kim EJ, Bae I-H, Lee K-N, Kim YD, Kim D-K, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 2011;48:885–93.

    Article  CAS  PubMed  Google Scholar 

  92. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 2008;375:414–9.

    Article  CAS  PubMed  Google Scholar 

  93. Dacic S, Kalajzic I, Visnjic D, Lichtler A, Rowe D. Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 2001;16:1228–36.

    Article  CAS  PubMed  Google Scholar 

  94. Cao Y, Liu X, Xu H. Utility of serum tartrate-resistant acid phosphatase isoform 5b, bone alkaline phosphatase and osteocalcin in osteoporotic fractures in Chinese patients. Clin Lab 2011;58:845–50.

    Google Scholar 

  95. Lee SY, Lee KS, Yi SH, Kook SH, Lee JC. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-(B pathway and attenuating ROS production. PLoS One 2013;8:e80873.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ, et al. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 2013;8:e80098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 2011;112:2902–9.

    Article  CAS  PubMed  Google Scholar 

  98. Liu L, Zhang C, Hu Y, Peng B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. J Endod 2012;38:943–7.

    Article  PubMed  Google Scholar 

  99. Li X, Guo Y, Yan W, Snyder MP, Li X. Metformin improves diabetic bone health by Re-balancing catabolism and nitrogen disposal. PLoS One 2015;10:e0146152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sedlinsky C, Molinuevo MS, Cortizo AM, Tolosa MJ, Felice JI, Sbaraglini ML, et al. Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats. Eur J Pharmacol 2011;668:477–85.

    Article  CAS  PubMed  Google Scholar 

  101. van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, et al. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol 2012;166:711–6.

    Article  PubMed  CAS  Google Scholar 

  102. Hegazy SK. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women. J Bone Miner Metab 2015;33:207–12.

    Article  CAS  PubMed  Google Scholar 

  103. Borges J, Bilezikian J, Jones-Leone A, Acusta A, Ambery P, Nino A, et al. A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naïve type 2 diabetes mellitus patients. Diabetes Obes Metab 2011;13:1036–46.

    Article  CAS  PubMed  Google Scholar 

  104. Melton LJ, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 2008;23:1334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005;48:1292–9.

    Article  CAS  PubMed  Google Scholar 

  106. Hegazy SK. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women. J Bone Miner Metab 2014;33:207–12.

    Article  PubMed  CAS  Google Scholar 

  107. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015;38:140–9.

    Article  PubMed  Google Scholar 

  108. Bolen S, Feldman L, Vassy J, Wilson L, Yeh H-C, Marinopoulos S, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 2007;147:386–99.

    Article  PubMed  Google Scholar 

  109. Kachroo S, Kawabata H, Colilla S, Shi L, Zhao Y, Mukherjee J, et al. Association between hypoglycemia and fall-related events in type 2 diabetes mellitus: analysis of a US commercial database. J Manag Care Spec Pharm 2015;21:243–53.

    PubMed  Google Scholar 

  110. Johnston S, Conner C, Aagren M, Ruiz K, Bouchard J. Association between hypoglycaemic events and fall-related fractures in medicare-covered patients with type 2 diabetes. Diabetes Obes Metab 2012;14:634–43.

    Article  CAS  PubMed  Google Scholar 

  111. Ma P, Gu B, Ma J, Lingling E, Wu X, Cao J, et al. Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3-kinase/Akt pathway. Metabolism 2010;59:359–66.

    Article  CAS  PubMed  Google Scholar 

  112. Ma P, Xiong W, Liu H, Ma J, Gu B, Wu X. Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway. Arch Oral Biol 2011;56:307–16.

    Article  CAS  PubMed  Google Scholar 

  113. Ma P, Gu B, Xiong W, Tan B, Geng W, Li J, et al. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3 K/Akt/eNOS pathway in a high glucose microenvironment. PLoS One 2014;9:e112243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Fronczek-Sokół J, Pytlik M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats. Pharmacol Rep 2014;66:412–7.

    Article  PubMed  CAS  Google Scholar 

  115. Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab 2010;28:554–60.

    Article  CAS  PubMed  Google Scholar 

  116. Gilbert MP, Marre M, Holst JJ, Garber A, Baeres FM, Thomsen H, et al. Comparision of the long-term effects of liraglutide and glimipiride monotherapy on bone mineral density in patient with type 2 diabetes. Endocr Pract 2015.

  117. Solomon DH, Cadarette SM, Choudhry NK, Canning C, Levin R, Sturmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab 2009;94:2792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Colhoun H, Livingstone S, Looker H, Morris A, Wild S, Lindsay R, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 2012;55:2929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016;48:e219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res 2005;20:1497–506.

    Article  CAS  PubMed  Google Scholar 

  121. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 2011;11:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 2011;124:S3–18.

    Article  CAS  PubMed  Google Scholar 

  123. Nielsen LL, Baron AD. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr Opin Investig Drugs 2003;4:401–5.

    CAS  PubMed  Google Scholar 

  124. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists a review of their efficacy and tolerability. Diabetes Care 2011;34:S279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma X, Meng J, Jia M, Bi L, Zhou Y, Wang Y, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res 2013;28:1641–52.

    Article  CAS  PubMed  Google Scholar 

  126. Sun H-x, Lu N, Liu D-m, Zhao L, Sun L-h, Zhao H-y, et al. The bone-preserving effects of exendin -4 in ovariectomized rats. Endocrine 2015;1–10.

  127. Lu N, Sun H, Yu J, Wang X, Liu D, Zhao L, et al. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PLoS One 2015;10:e0132744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nuche-Berenguer B, Moreno P, Portal-Nunez S, Dapia S, Esbrit P, Villanueva-Penacarrillo ML. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept 2010;159:61–6.

    Article  CAS  PubMed  Google Scholar 

  129. Sun HX, Lu N, Luo X, Zhao L, Liu JM. Liraglutide, the glucagon-like peptide-1 receptor agonist, has anabolic bone effects in diabetic Goto-Kakizaki rats. J Diabetes 2015;7:584–8.

    Article  CAS  PubMed  Google Scholar 

  130. Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 2013;92:533–40.

    Article  PubMed  CAS  Google Scholar 

  131. Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Liraglutide a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 2007;56:8–15.

    Article  CAS  PubMed  Google Scholar 

  132. Pereira M, Jeyabalan J, Jørgensen C, Hopkinson M, Al-Jazzar A, Roux J, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 2015;81:459–67.

    Article  CAS  PubMed  Google Scholar 

  133. Bunck MC, Eliasson B, Cornér A, Heine RJ, Shaginian RM, Taskinen MR, et al. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab 2011;13:374–7.

    Article  CAS  PubMed  Google Scholar 

  134. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes 2014;6:260–6.

    Article  CAS  PubMed  Google Scholar 

  135. Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine 2015;48:107–15.

    Article  CAS  PubMed  Google Scholar 

  136. Sbaraglini ML, Molinuevo MS, Sedlinsky C, Schurman L, McCarthy AD. Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells. Eur J Pharmacol 2014;727:8–14.

    Article  CAS  PubMed  Google Scholar 

  137. Gallagher EJ, Sun H, Kornhauser C, Tobin-Hess A, Epstein S, Yakar S, et al. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes. Diabetes Metab Res Rev 2014;30:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Glorie L, Behets GJ, Baerts L, De Meester I, D’Haese PC, Verhulst A. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab 2014;307:E447–55.

    Article  CAS  PubMed  Google Scholar 

  139. Kyle KA, Willett TL, Baggio LL, Drucker DJ, Grynpas MD. Differential effects of PPAR-γ activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology 2010;152:457–67.

    Article  PubMed  CAS  Google Scholar 

  140. Cusick T, Mu J, Pennypacker B, Li Z, Scott K, Shen X, et al. Bone loss in the oestrogen-depleted rat is not exacerbated by sitagliptin, either alone or in combination with a thiazolidinedione. Diabetes Obes Metab 2013;15:954–7.

    Article  CAS  PubMed  Google Scholar 

  141. Bunck MC, Poelma M, Eekhoff EM, Schweizer A, Heine RJ, Nijpels G, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes 2012;4:181–5.

    Article  CAS  PubMed  Google Scholar 

  142. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures a meta-analysis of randomized clinical trials. Diabetes Care 2011;34:2474–6.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hirshberg B, Parker A, Edelberg H, Donovan M, Iqbal N. Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 2014;30:556–69.

    Article  CAS  PubMed  Google Scholar 

  144. Mosenzon O, Wei C, Davidson J, Scirica BM, Yanuv I, Rozenberg A, et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI53 trial. Diabetes Care 2015;38:2142–50.

    Article  PubMed  Google Scholar 

  145. Mamza J, Marlin C, Wang C, Chokkalingam K, Idris I. DPP-4 inhibitor therapy and bone fractures in people with Type 2 diabetes-A systematic review and meta-analysis. Diabetes Res Clin Pract 2016;116:288–98.

    Article  CAS  PubMed  Google Scholar 

  146. Thomas D, Ng K, Insulin Best J. bone: a clinical and scientific review. Endocrinol Metabol 1997;4:5–17.

    Google Scholar 

  147. Cornish J, Callon K, Reid I. Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 1996;59:492–5.

    Article  CAS  PubMed  Google Scholar 

  148. Maor G, Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor 1. Endocrinology 1999;140:1841–51.

    Article  CAS  PubMed  Google Scholar 

  149. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Diabetes Investig 2000;105:935.

    CAS  Google Scholar 

  150. Akune T, Ogata N, Hoshi K, Kubota N, Terauchi Y, Tobe K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002;159:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang D-W, Du S-L, Xu M-T, Lu Y-T, Wang Z-C, Wang L-X. Effects of insulin therapy on fracture healing and expression of VEGF in diabetic rats. J Appl Biomed 2013;11:33–40.

    Article  CAS  Google Scholar 

  152. Pastor MC, Lopez-Ibarra P, Escobar-Jimenez F, Pardo MS, Garcia-Cervigon A. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 2000;11:455–9.

    Article  Google Scholar 

  153. Weinstock RS, Goland RS, Shane E, Clemens TL, Lindsay R, Bilezikian JP. Bone mineral density in women with type II diabetes mellitus. J Bone Miner Res 1989;4:97–101.

    Article  CAS  PubMed  Google Scholar 

  154. Dennison EM, Syddall HE, Aihie Sayer A, Craighead S, Phillips DI, Cooper C. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance. Diabetologia 2004;47:1963–8.

    Article  CAS  PubMed  Google Scholar 

  155. Kayath MJ, Tavares EF, Dib SA, Vieira JG. Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diabetes Complications 1998;12:133–9.

    Article  CAS  PubMed  Google Scholar 

  156. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Diabetes and risk of fracture: the blue mountains eye study. Diabetes Care 2001;24:1198–203.

    Article  CAS  PubMed  Google Scholar 

  157. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001;86:32–8.

    Article  CAS  PubMed  Google Scholar 

  158. Ottenbacher KJ, Ostir GV, Peek MK, Goodwin JS, Markides KS. Diabetes mellitus as a risk factor for hip fracture in mexican american older adults. J Gerontol A Biol Sci Med Sci 2002;57:M648–53.

    Article  PubMed  Google Scholar 

  159. Monami M, Cresci B, Colombini A, Pala L, Balzi D, Gori F, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients a case-control study. Diabetes Care 2008;31:199–203.

    Article  PubMed  Google Scholar 

  160. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet 2005;366:1885–93.

    Article  PubMed  Google Scholar 

  161. Koh W-P, Wang R, Ang L-W, Heng D, Yuan J-M, Mimi CY. Diabetes and risk of hip fracture in the Singapore Chinese Health Study. Diabetes Care 2010;33:1766–70.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Strotmeyer ES, Kamineni A, CauleyJA, Robbins JA, Fried LF, Siscovick DS, et al. Potential explanatory factors for higher incident hip fracture risk in older diabetic adults. Curr Gerontol Geriatr Res 2011, doi:https://doi.org/10.1155/2011/979270.

    Article  Google Scholar 

  163. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 2012;27:301–8.

    Article  PubMed  Google Scholar 

  164. Li CI, Liu CS, Lin WY, Meng NH, Chen CC, Yang SY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study. J Bone Miner Res 2015;30:1338–46.

    Article  CAS  PubMed  Google Scholar 

  165. Martinez-Laguna D, Tebe C, Javaid M, Nogues X, Arden N, Cooper C, et al. Incident type 2 diabetes and hip fracture risk: a population-based matched cohort study. Osteoporos Int 2015;26:827–33.

    Article  CAS  PubMed  Google Scholar 

  166. Rathmann W, Kostev K. Fracture risk in patients with newly diagnosed type 2 diabetes: a retrospective database analysis in primary care. J Diabetes Complications 2015;29:766–70.

    Article  PubMed  Google Scholar 

  167. Kim SH, Kim YM, Yoo JS, Choe EY, Kim TH, Won YJ. Increased risk of hip fractures in Korean patients with type 2 diabetes: a 6-year nationwide population-based study. J Bone Miner Metab 2016; 1–7.

  168. Starup-Linde J, Gregersen S, Vestergaard P. Associations with fracture in patients with diabetes: a nested case?control study. BMJ Open 2016;6:e009686, doi:https://doi.org/10.1136/bmjopen-2015-009686.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wallander M, Axelsson KF, Nilsson AG, Lundh D, Lorentzon M. Type 2 diabetes and risk of hip fractures and non-Skeletal fall injuries in the elderly: a study from the fractures and fall injuries in the elderly cohort (FRAILCO). J Bone Miner Res 2016.

  170. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  171. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 2007;30:835–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju Sharma.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil, M., Khan, R.A., Kalam, A. et al. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies. Pharmacol. Rep 69, 1328–1340 (2017). https://doi.org/10.1016/j.pharep.2017.05.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.05.008

Keywords

Navigation