Skip to main content
Log in

Isobolographic analysis of the cutaneous antinociceptive interaction between bupivacaine co-injected with serotonin in rats

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The aim of this experiment was to investigate a long-lasting local anesthetic bupivacaine combined with serotonin at inducing cutaneous antinociception.

Methods

The skin antinociception, characterized by an inhibition of the cutaneous trunci muscle reflex (CTMR) following the pinprick on the dorsal skin of rats, was evaluated. The cutaneous antinociceptive effects of bupivacaine alone, serotonin alone, or bupivacaine co-injected with serotonin in a dose-dependent fashion were constructed, while the drug-drug interactions were evaluated by isobologram.

Results

Subcutaneous serotonin, as well as the local anesthetic bupivacaine provoked dose-related cutaneous antinociception. On an equipotent basis (50% effective dose [ED50]), the relative potency was bupivacaine (0.43 [0.37–0.50] μmol) > serotonin (1.27 [1.15–1.40] μmol) (p < 0.01). At the equi-anesthetic doses (ED75, ED50 and ED25), the duration of bupivacaine was similar to that of serotonin at producing cutaneous antinociceptive effects. Co-administration of bupivacaine and serotonin displayed a synergistic antinociception.

Conclusions

The preclinical data demonstrated that serotonin is less potent in eliciting cutaneous antinociceptive effects but has the similar duration of action, compared with bupivacaine. We also found a more significant depth of the sensory block with bupivacaine + serotonin than bupivacaine alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hannibal K, Galatius H, Hansen A, Obel E, Ejlersen E. Preoperative wound infiltration with bupivacaine reduces early and late opioid requirement after hysterectomy. Anesth Analg 1996;83:376–81.

    Article  CAS  PubMed  Google Scholar 

  2. Carbonell AM, Harold KL, Mahmutovic AJ, Hassan R, Matthews BD, Kercher KW, et al. Local injection for the treatment of suture site pain after laparoscopic ventral hernia repair. Am Surg 2003;69:688–91.

    PubMed  Google Scholar 

  3. Suraseranivongse S, Chowvanayotin S, Pirayavaraporn S, Kongsayreepong S, Gunnaleka P, Kraiprasit K, et al. Effect of bupivacaine with epinephrine wound instillation for pain relief after pediatric inguinal herniorrhaphy and hydrocelectomy. Reg Anesth Pain Med 2003;28:24–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cameron AE, Cross FW. Pain and mobility after inguinal herniorrhaphy: ineffectiveness of subcutaneous bupivacaine. Br J Surg 1985;72:68–9.

    Article  CAS  PubMed  Google Scholar 

  5. Newton DJ, McLeod GA, Khan F, Belch JJ. Vasoactive characteristics of bupivacaine and levobupivacaine with and without adjuvant epinephrine in peripheral human skin. Br J Anaesth 2005;94:662–7.

    Article  CAS  PubMed  Google Scholar 

  6. Bameshki AR, Razban M, Khadivi E, Razavi M, Bakhshaee M. The effect of local injection of epinephrine and bupivacaine on post-tonsillectomy pain and bleeding. Iran J Otorhinolaryngol 2013;25:209–14.

    PubMed  PubMed Central  Google Scholar 

  7. Xia Y, Fu Z, Hu J, Huang C, Paudel O, Cai S, et al. TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2013;305:C704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott DB, Jebson PJ, Braid DP, Ortengren B, Frisch P. Factors affecting plasma levels of lignocaine and prilocaine. Br J Anaesth 1972;44:1040–9.

    Article  CAS  PubMed  Google Scholar 

  9. Tallarida RJ, Porreca F, Cowan A. Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sci 1989;45:947–61.

    Article  CAS  PubMed  Google Scholar 

  10. Chen YW, Chiu CC, Wei YL, Hung CH, Wang JJ. Propranolol combined with dopamine has a synergistic action in intensifying and prolonging cutaneous analgesia in rats. Pharmacol Rep 2015;67:1224–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983;16:109–10.

    Article  CAS  PubMed  Google Scholar 

  12. Chen YW, Chiu CC, Kan CD, Wang JJ, Hung CH. The addition of epinephrine to proxymetacaine or oxybuprocaine solution increases the depth and duration of cutaneous analgesia in rats. Reg Anesth Pain Med 2016;41:601–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hung CH, Liu KS, Shao DZ, Cheng KI, Chen YC, Chen YW. The systemic toxicity of equipotent proxymetacaine, oxybuprocaine, and bupivacaine during continuous intravenous infusion in rats. Anesth Analg 2010;110:238–42.

    Article  CAS  PubMed  Google Scholar 

  14. Bulbring E, Wajda I. Biological comparison of local anaesthetics. J Pharmacol Exp Ther 1945;85:78–84.

    CAS  PubMed  Google Scholar 

  15. Khodorova AB, Strichartz GR. The addition of dilute epinephrine produces equieffectiveness of bupivacaine enantiomers for cutaneous analgesia in the rat. Anesth Analg 2000;91:410–6.

    CAS  PubMed  Google Scholar 

  16. Hung CH, Chiu CC, Liu KS, Chen YW, Wang JJ. Subcutaneous l-tyrosine elicits cutaneous analgesia in response to local skin pinprick in rats. Eur J Pharmacol 2015;765:457–62.

    Article  CAS  PubMed  Google Scholar 

  17. Tzeng JI, Pan HJ, Liu KS, Chen YW, Chen YC, Wang JJ. Epinephrine as adjuvant for propranolol produces a marked peripheral action in intensifying and prolonging analgesia in response to local dorsal cutaneous noxious pinprick in rats. Eur J Pharmacol 2014;740:565–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hung CH, Chiu CC, Liu KS, Wang JJ, Chen YW. Clonidine as an adjuvant for propranolol enhances its effect on infiltrative cutaneous analgesia in rats. Neurosci Lett 2016;616:70–4.

    Article  CAS  PubMed  Google Scholar 

  19. Chen YW, Chu CC, Chen YC, Wang JJ, Hung CH. The local anesthetic effect of memantine on infiltrative cutaneous analgesia in the rat. Anesth Analg 2011;113:191–5.

    Article  CAS  PubMed  Google Scholar 

  20. Tzeng JI, Lin HT, Chen YW, Hung CH, Wang JJ. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats. Eur J Pharmacol 2015;752C:55–60.

    Article  Google Scholar 

  21. Leung YM, Tzeng JI, Gong CL, Wang YW, Chen YW, Wang JJ. Caramiphen-induced block of sodium currents and spinal anesthesia. Eur J Pharmacol 2015;746:213–20.

    Article  CAS  PubMed  Google Scholar 

  22. Minkin S, Kundhal K. Likelihood-based experimental design for estimation of ED50. Biometrics 1999;55:1030–7.

    Article  CAS  PubMed  Google Scholar 

  23. Tzeng JI, Kan CD, Wang JN, Wang JJ, Lin HT, Hung CH. Intrathecal amantadine for prolonged spinal blockade of sensory and motor functions in rats. Fundam Clin Pharmacol 2016;30:357–63.

    Article  CAS  PubMed  Google Scholar 

  24. Chen YW, Chiu CC, Wang JN, Hung CH, Wang JJ. Ifenprodil for prolonged spinal blockades of motor function and nociception in rats. Pharmacol Rep 2016;68:357–62.

    Article  CAS  PubMed  Google Scholar 

  25. Chen YW, Liu KS, Wang JJ, Chou W, Hung CH. Isobolographic analysis of epinephrine with bupivacaine, dextromethorphan, 3-methoxymorphinan, or dextrorphan on infiltrative anesthesia in rats: dose-response studies. Reg Anesth Pain Med 2008;33:115–21.

    CAS  PubMed  Google Scholar 

  26. Tzeng JI, Wang JN, Wang JJ, Chen YW, Hung CH. Cutaneous synergistic analgesia of bupivacaine in combination with dopamine in rats. Neurosci Lett 2016;620:88–92.

    Article  CAS  PubMed  Google Scholar 

  27. Leung YM, Chu CC, Kuo CS, Chen YW, Hung CH, Wang JJ. Isobolographic analysis of interaction between nisoxetine- and mepivacaine-induced spinal blockades in rats. Fundam Clin Pharmacol 2014;28:88–94.

    Article  CAS  PubMed  Google Scholar 

  28. Chen YW, Chu CC, Chen YC, Wang JJ, Hung CH. Isobolographic analysis of caramiphen and lidocaine on spinal anesthesia in rats. Neurosci Lett 2010;469:174–8.

    Article  CAS  PubMed  Google Scholar 

  29. Borgeat A, Aguirre J. Update on local anesthetics. Curr Opin Anaesthesiol 2010;23:466–71.

    Article  PubMed  Google Scholar 

  30. Fozzard HA, Lee PJ, Lipkind GM. Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr Pharm Des 2005;11:2671–86.

    Article  CAS  PubMed  Google Scholar 

  31. Gerner P, Mujtaba M, Sinnott CJ, Wang GK. Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 2001;94:661–7.

    Article  CAS  PubMed  Google Scholar 

  32. Camponovo C, Wulf H, Ghisi D, Fanelli A, Riva T, Cristina D, et al. Intrathecal 1% 2-chloroprocaine vs 0.5% bupivacaine in ambulatory surgery: a prospective, observer-blinded, randomised, controlled trial. Acta Anaesthesiol Scand 2014;58:560–6.

    Article  CAS  PubMed  Google Scholar 

  33. Camponovo C. Spinal 1% 2-Chloroprocaine versus general anesthesia for ultra-short outpatient procedures: a retrospective analysis. Acta Biomed 2014;85:265–8.

    CAS  PubMed  Google Scholar 

  34. McLure HA, Rubin AP. Review of local anaesthetic agents. Minerva Anestesiol 2005;71:59–74.

    CAS  PubMed  Google Scholar 

  35. Moeller H. The vasoconstrictor and piloerector effect in human skin of dopamine and normetanephrine as compared with noradrenaline. J Invest Dermatol 1965;44:83–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gessler EM, Hart AK, Dunlevy TM, Greinwald Jr. JH. Optimal concentration of epinephrine for vasoconstriction in ear surgery. Laryngoscope 2001;111:1687–90.

    Article  CAS  PubMed  Google Scholar 

  37. Metaxotos NG, Asplund O, Hayes M. The efficacy of bupivacaine with adrenaline in reducing pain and bleeding associated with breast reduction: a prospective trial. Br J Plast Surg 1999;52:290–3.

    Article  CAS  PubMed  Google Scholar 

  38. Newton DJ, Burke D, Khan F, McLeod GA, Belch JJ, McKenzie M, et al. Skin blood flow changes in response to intradermal injection of bupivacaine and levobupivacaine, assessed by laser Doppler imaging. Reg Anesth Pain Med 2000;25:626–31.

    Article  CAS  PubMed  Google Scholar 

  39. Newman JM, Dora KA, Rattigan S, Edwards SJ, Colquhoun EQ, Clark MG. Norepinephrine and serotonin vasoconstriction in rat hindlimb control different vascular flow routes. Am J Physiol 1996;270:E689–99.

    CAS  PubMed  Google Scholar 

  40. Kuraishi Y, Hirota N, Satoh M, Takagi H. Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests. Brain Res 1985;326:168–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, JI., Chiu, CC., Wang, JJ. et al. Isobolographic analysis of the cutaneous antinociceptive interaction between bupivacaine co-injected with serotonin in rats. Pharmacol. Rep 69, 846–850 (2017). https://doi.org/10.1016/j.pharep.2017.03.017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.03.017

Keywords

Navigation