Skip to main content
Log in

Population pharmacokinetic modeling of furosemide in patients with hypertension and fluid overload conditions

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Furosemide is a loop diuretic drug frequently indicated in hypertension and fluid overload conditions such as congestive heart failure and hepatic cirrhosis.

Objective

The purpose of the study was to establish a population pharmacokinetic model for furosemide in Indian hypertensive and fluid overload patients, and to evaluate effects of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of furosemide.

Methods

A total of 188 furosemide plasma sample concentrations from 63 patients with hypertension or fluid overload conditions were collected in this study. The population pharmacokinetic model for furosemide was built using Phoenix NLME 1.3 software. The covariates included age, sex, body surface area, bodyweight, height and creatinine clearance (CRCL).

Results

The pharmacokinetic data of furosemide was adequately explained by a two-compartment linear pharmacokinetic model with first-order absorption and an absorption lag-time. The mean values of CL/F and Vd/F of furosemide in the patients were 15.054 Lh−1 and 4.419 L, respectively. Analysis of covariates showed that CRCL was significantly influencing the clearance of furosemide.

Conclusion

The final population pharmacokinetic model was demonstrated to be appropriate and effective and it can be used to assess the pharmacokinetic parameters of furosemide in Indian patients with hypertension and fluid overload conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitsios GD, Mascari P, Ettunsi R, Gray AW. Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis. J Crit Care 2014;29:253–9.

    Article  CAS  Google Scholar 

  2. Klausner EA, Lavy E, Stepensky D, Cserepes E, Barta M, Friedman M, et al. Furosemide pharmacokinetics and pharmacodynamics following gastroretentive dosage form administration to healthy volunteers. J Clin Pharmacol 2003;43:711–20.

    Article  CAS  Google Scholar 

  3. Heidarimoghadam R, Farmany A. Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxy-MWCNT sensor. Mater Sci Eng C Mater Biol Appl 2016;58:1242–5.

    Article  CAS  Google Scholar 

  4. Tamargo J, Segura J, Ruilope LM. Diuretics in the treatment of hypertension: part 2: loop diuretics and potassium-sparing agents. Expert Opin Pharmacother 2014;15:605–21.

    Article  CAS  Google Scholar 

  5. Lamarche C, Pichette M, Ouimet D, Vallée M, Bell R, Ouellet G, et al. Pharmacokinetic and dynamic of furosemide in peritoneal dialysis patients. Perit Dial Int 2016;36:107–8.

    Article  CAS  Google Scholar 

  6. Oh SW, Han SY. Loop diuretics in clinical practice. Electrolyte Blood Press 2015;13:17–21.

    Article  CAS  Google Scholar 

  7. Huang X, Dorhout Mees E, Vos P, Hamza S, Braam B. Everything we always wanted to know about furosemide but were afraid to ask. Am J Physiol Renal Physiol 2016;310:958 9–71.

    Article  Google Scholar 

  8. Zisaki A, Miskovic L, Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des 2015;21:806–22.

    Article  CAS  Google Scholar 

  9. Hu P, Chen J, Lui D, Zheng X, Zhao Q, Jiang J. Development of population pharmacokinetic model of icotinib with non-linear absorption characters in healthy Chinese volunteers to assess the CYP2C19 polymorphism and food-intake effect. Eur J Clin Pharmacol 2015;71:843–50.

    Article  CAS  Google Scholar 

  10. Pene DT, Anic-Milic T, Oreskovic K, Padovan J, Brouwer KL, Zuo P, et al. Development of a population pharmacokinetic model to describe azithromycin wholeblood and plasma concentrations over time in healthy subjects. Antimicrob Agents Chemother 2013;57:3194–201.

    Article  Google Scholar 

  11. Carlton LD, Patterson JH, Mattson CN, Schmith VD. The effects of epoprostenol on drug disposition. II: a pilot study of the pharmacokinetics of furosemide with and without epoprostenol in patients with congestive heart failure. J Clin Pharmacol 1996;36:257–64.

    Article  CAS  Google Scholar 

  12. Wakelkamp M, Alván G, Gabrielsson J, Paintaud G. Pharmacodynamic modeling of furosemide tolerance after multiple intravenous administration. Clin Pharmacol Ther 1996;60:75–88.

    Article  CAS  Google Scholar 

  13. Wakelkamp M, Alván G, Scheinin H, Gabrielsson J. The influence of drug input rate on the development of tolerance to frusemide. Br J Clin Pharmacol 1998;46:479–87.

    Article  CAS  Google Scholar 

  14. Schoemaker RC, van dDer Vorst MM, van Heel IR, Cohen AF, Burggraaf J. Development of an optimal furosemide infusion strategy in infants with modeling and simulation. Clin Pharmacol Ther 2002;72:383–90.

    Article  CAS  Google Scholar 

  15. Van Wart SA, Shoaf SE, Mallikaarjun S, Mager DE. Population-based meta-analysis of furosemide pharmacokinetics. Biopharm Drug Dispos 2014;35:119–33.

    Article  Google Scholar 

  16. Feng S, Jiang J, Hu P, Zhang J, Liu T, Zhao Q, et al. A phase I study on pharmacokinetics and pharmacodynamics of higenamine in healthy Chinese subjects. Acta Pharmacol Sin 2012;33:1353–8.

    Article  CAS  Google Scholar 

  17. Huntjens DR, Liefaard LC, Nandy P, Drenth HK, Vermeulen A. Population pharmacokinetic modeling of tapentadol extended release (ER) in healthy subjects and patients with moderate or severe pain. Clin Drug Investig 2016;36:213–23.

    Article  CAS  Google Scholar 

  18. Vestergaard B, Thygesen P, Kreilgaard M, Fels JJ, Lykkesfeldt J, Agersø H. The kidneys play a central role in the clearance of rhGH in rats. Eur J Pharm Sci 2016;86:29–33.

    Article  CAS  Google Scholar 

  19. Munekage M, Ichikawa K, Kitagawa H, Ishihara K, Uehara H, Watanabe J, et al. Population pharmacokinetic analysis of daikenchuto, a traditional Japanese medicine (Kampo) in Japanese and US health volunteers. Drug Metab Dispos 2013;41:1256–63.

    Article  CAS  Google Scholar 

  20. Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, et al. BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 2002;105:1348–53.

    Article  CAS  Google Scholar 

  21. Silbert BI, Ho KM, Lipman J, Roberts JA, Corcoran TB, Morgan DJ, et al. Determinants of urinary output response to IV furosemide in acute kidney injury: a Pharmacokinetic/Pharmacodynamic study. Crit Care Med 2016, doi:https://doi.org/10.1097/ccm.0000000000001823.

    Article  CAS  Google Scholar 

  22. Kerremans AL, Gribnau FW. Changes in pharmacokinetics and in effect of furosemide in the elderly. Clin Exp Hypertens A 1983;5:271–84.

    CAS  PubMed  Google Scholar 

  23. Boles-Ponto LL, Schoenwald RD. Furosemide (frusemide): a pharmacokinetic/pharmacodynamic review (part I). Clin Pharmacokinet 1990;18:381–408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsimhareddy Yellu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodati, D., Yellu, N. Population pharmacokinetic modeling of furosemide in patients with hypertension and fluid overload conditions. Pharmacol. Rep 69, 492–496 (2017). https://doi.org/10.1016/j.pharep.2017.01.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.01.006

Keywords

Navigation