Skip to main content

Advertisement

Log in

Effects of fenoterol on the skeletal system depend on the androgen level

  • Original Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough.

Methods

The effects of fenoterol, a selective β2-adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures.

Results

Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures.

Conclusions

The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 2014;94:140–51.

    Article  CAS  PubMed  Google Scholar 

  2. Levasseur R. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine 2003;70:515–9.

    Article  Google Scholar 

  3. Bonnet N, Pierroz DD, Ferrari SL. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J Musculoskelet Neuronal Interact 2008;8:94–104.

    CAS  PubMed  Google Scholar 

  4. Kondo H, Togari A. Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 2011;88:23–32.

    Article  CAS  PubMed  Google Scholar 

  5. Jiao K, Niu LN, Li O, Ren G, Zhao C, Liu Y, et al. β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep 2015;5:1–15.

    Google Scholar 

  6. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56:615–49.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet N, Benhamou CL, Malaval L, Goncalves C, Vico L, Eder V, et al. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol 2008;217:819–27.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet N, Gadois C, McCloskey E, Lemineur G, Lespessailles E, Courteix D, et al. Protective effect of β blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 2007;40:1209–16.

    Article  CAS  PubMed  Google Scholar 

  9. Śliwiński L, Folwarczna J, Pytlik M, Cegieła U, Nowińska B, Trzeciak H, et al. Do effects of propranolol on the skeletal system depend on the estrogen status. Pharmacol Rep 2013;65:1345–56.

    Article  PubMed  Google Scholar 

  10. Śliwiński L, Folwarczna J, Nowińska Trzeciak BHI. Differential effects of fenoterol on the skeletal system of normal and ovariectomized rats. Calcif Tissue Int 2008;82:S225 35th European Symposium on Calcified Tissues 24–28.05.2008, Barcelona.

    Google Scholar 

  11. Folwarczna J, Nowińska B, Śliwiński L, Pytlik M, Cegieła U, Betka A. Fenoterol did not enhance glucocorticoid-induced skeletal changes in male rats. Acta Biochim Pol 2011;58:313–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bonnet N, Benhamou CL, Beaupied H, Laroche N, Vico L, Dolleans E, et al. Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol 2007;102:1502–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bonnet N, Benhamou CL, Brunet-Imbault B, Arlettaz A, Horcajada MN, Richard O, et al. Severe bone alterations under β2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone 2005;37:622–33.

    Article  CAS  PubMed  Google Scholar 

  14. Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 1969;3:211–37.

    Article  CAS  PubMed  Google Scholar 

  15. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993;14:595–608.

    Article  CAS  PubMed  Google Scholar 

  16. Cegieła U, Folwarczna J, Pytlik M, Zgorka G. Effects of extracts from Trifolium medium L. and Trifolium pratense L. on development of estrogen deficiency-induced osteoporosis in rats. Evid Based Complement. Alternat Med 2012 Article ID 921684: 11 pages.

  17. Cegieła U, Sliwiński L, Kaczmarczyk-Sedlak I, Folwarczna J. In vivo effects of high-dose methotrexate on bone remodeling in rats. Pharmacol Rep 2005;57:504–14.

    PubMed  Google Scholar 

  18. Stürmer EK, Seidlova-Wuttke D, Sehmisch S, Rack T, Wille J, Frosch KH, et al. Standardized bending and breaking test for the normal and osteoporotic metaphyseal tibias of the rat: effect of estradiol, testosterone, and raloxifene. J Bone Miner Res 2006;21:89–96.

    Article  CAS  PubMed  Google Scholar 

  19. Folwarczna J, Pytlik M, Śliwiński L, Cegieła U, Nowińska B, Rajda M. Effects of propranolol on the development of glucocorticoid-induced osteoporosis in male rats. Pharmacol Rep 2011;63:1040–9.

    Article  CAS  PubMed  Google Scholar 

  20. Taranta A, Brama M, Teti A, De Luca V, Scandurra R, Spera G, et al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 2002;30:368–76.

    Article  CAS  PubMed  Google Scholar 

  21. Śliwiński L, Folwarczna J, Nowińska B, Cegieła U, Pytlik M, Kaczmarczyk-Sedlak I, et al. A comparative study of effects of genistein, estradiol and raloxifene on the murine skeletal system. Acta Bioch Pol 2009;56:261–70.

    Google Scholar 

  22. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, et al. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 2002;143:3105–13.

    Article  CAS  PubMed  Google Scholar 

  23. Liu BY, Guo J, Lanske B, Divieti P, Kronenberg HM, Bringhurst FR. Conditionally immortalized murine bone marrow stromal cells mediate parathyroid hormone-dependent osteoclastogenesis in vitro. Endocrinology 1998;139:1952–64.

    Article  CAS  PubMed  Google Scholar 

  24. Farahbakhsh NA. Ectonucleotidases of the rabbit ciliary body nonpigmented epithelium. Invest Ophthalmol Vis Sci 2003;44:3952–60.

    Article  PubMed  Google Scholar 

  25. Chauhan BK, Zhang W, Cveklova K, Kantorow M, Cvekl A. Identification of differentially expressed genes in mouse Pax6 heterozygous lenses. Invest Ophthalmol Vis Sci 2002;43:1884–90.

    PubMed  Google Scholar 

  26. Grenier J, Trousson A, Chauchereau A, Amazit L, Lamirand A, Leclerc P, et al. Selective recruitment of p160 coactivators on glucocorticoid-regulated promoters in Schwann cells. Mol Endocrinol 2004;18:2866–79.

    Article  CAS  PubMed  Google Scholar 

  27. Aubin JE. Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. 3rd edition Academic Press; 2008. p. 85–107.

  28. Gunness M, Orwol IE. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J Bone Miner Res 1995;10:1735–44.

    Article  CAS  PubMed  Google Scholar 

  29. Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles. Similarities, parallels, and putative interactions in health and disease. Bone 2015;80:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Notini AJ, McManus JF, Moore A, Bouxsein M, Jimenez M, Chiu WS, et al. Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J Bone Miner Res 2007;22:347–56.

    Article  CAS  PubMed  Google Scholar 

  31. Rochira V, Balestrieri AB, Madeo Zirilli L, Carani C. Osteoporosis and male age-related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocrinol 2006; 154:175–85.

    Article  CAS  PubMed  Google Scholar 

  32. Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990;8:612–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, et al. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 2003;5:9416–21.

    Article  CAS  Google Scholar 

  34. Heywood LH. Testosterone levels in the male laboratory rat: variation under experimental conditions. Int J Androl 1980;3:519–29.

    Article  CAS  PubMed  Google Scholar 

  35. Elshafeey AH, Hamza YE, Amin SY, Zia H. In vitro transdermal permeation of fenoterol hydrobromide. IJAR 2012;3:125–32.

    CAS  Google Scholar 

  36. Ballejo G, Calixto JB, Medeiros YS. In vitro effects of calcium entry blockers, chlorpromazine and fenoterol upon human pregnant myometrium contractility. Br J Pharmacol 1986;89:515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeung JC, de Lannoy I, Gien B, Vuckovic D, Yang Y, Bojko B, Pawliszyn J. Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Anal Chim Acta 2012;742:37–44.

    Article  CAS  PubMed  Google Scholar 

  38. Chiang C, Chiu M, Moore AJ, Anderson PH, Ghasem-Zadeh A, McManus JF, et al. Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res 2009;24:621–31.

    Article  CAS  PubMed  Google Scholar 

  39. Vanderschueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, Bouillon R. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. Endocrinology 1992;130:2906–16.

    Article  CAS  PubMed  Google Scholar 

  40. Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O, et al. A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res 2004;64:1338–46.

    Article  CAS  PubMed  Google Scholar 

  41. Brindle P, Linke S, Montminy M. Protein-kinase-A dependent activator in CREB reveals a new role for the CREM family of repressors. Nature 1993;364:821–4.

    Article  CAS  PubMed  Google Scholar 

  42. Chio CC, Chang YH, Hsu YW, Chi KH, Lin WW. PKA-dependent activation of PKC, p38 MAPK and IKK in macrophage: implication in the induction of inducible nitric oxide synthase and interleukin-6 by dibutyryl cAMP. Cell Signal 2004;16:565–75.

    Article  CAS  PubMed  Google Scholar 

  43. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kB ligand and osteoprotegerin in regulation of bone remodeling in health and disease. Endocr Rev 2008;29:8155–92.

    Article  CAS  Google Scholar 

  44. Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM. RANKL/RANK-beyond bones. J Mol Med 2011;89:647–56.

    Article  CAS  PubMed  Google Scholar 

  45. Guerreiro PM, Renfro JL, Power DM, Canario AV. The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 2007;292:679–96.

    Article  CAS  Google Scholar 

  46. Davey RA, Turner A, McManus JF, Chiu WS, Tjahyono F, Moore AJ, et al. Calcitonin receptor plays a physiological role to protect against hypercalcemia in mice. J Bone Miner Res 2008;23:1182–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poole KES, Reeve J. Parathyroid hormone—a bone anabolic and catabolic agent. Curr Opin Pharmacol 2005;5:612–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007;40:1434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanyu R, Wehbi WL, Hayata T, Moriya S, Feinstein TN, Ezura Y, et al. Anabolic action of parathyroid hormone regulated by the β2-adrenergic receptor. Proc Natl Acad Sci U S A 2012;109:7433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu J, Wu RCh, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 2009;9:615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou G, Hashimoto Y, Kwak I, Tsai SY, Tsai M. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 2003;23:7742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 2011;152:1412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011;12:141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manolagas SC, O’Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 2013;9:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell 2004;24:937–49.

    Article  CAS  Google Scholar 

  56. Cuscito C, Colaianni G, Tamma R, Greco G, Dell’Endice S, Yuen T, Sun L, et al. Adrenergic stimulation decreases osteoblast oxytocin synthesis. Ann N Y Acad Sci. 2011;1237:53–7.

    Article  CAS  PubMed  Google Scholar 

  57. Beranger GE, Djedaini M, Battaglia S, Roux CH, Scheideler M, Heymann D, et al. Oxytocin reverses osteoporosis in a sex-dependent manner. Front Endocrinol (Lausanne) 2015;6:81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Śliwiński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śliwiński, L., Cegieła, U., Pytlik, M. et al. Effects of fenoterol on the skeletal system depend on the androgen level. Pharmacol. Rep 69, 260–267 (2017). https://doi.org/10.1016/j.pharep.2016.09.023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.09.023

Keywords

Navigation