Skip to main content
Log in

Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Metabotropic glutamate receptors (mGlu) play a role in a number of physiological processes and behaviors, as well as in certain pathological conditions and diseases. New drugs targetting mGlu receptors are being developed with treatment purposes. Recent data indicates that glutamate is involved in sleep, and pharmacological manipulation of distinct subtypes of mGlu receptors affect sleep. Here the consequences of selective pharmacological agonism of mGlu8 receptor upon sleep and wakefulness are explored for the first time.

Methods

32 male Wistar rats were stereotaxically prepared for polysomnography. (S)-3,4-dicarboxyphenylglycine (S)-3,4-DCPG (5, 10, and 20 mg/kg, ip), a selective and potent mGlu8 receptor agonist, or physiological saline was administered one hour after the light period began.

Results

Compared to control vehicle, (S)-3,4-DCPG, did not affect, at any of the doses given, the sleep and wakefulness parameters examined in the general analysis of the three hours of recording. Drug effects across time were studied analyzing three one-hour time blocks, control and experimental groups did not show any significant difference in the sleep and wakefulness parameters analyzed. Latency to sleep stages did not significantly vary between vehicle and treatment groups.

Conclusions

Results indicate that pharmacological activation of mGlu8 receptor by (S)-3,4-DCPG (5, 10, 20 mg/kg, ip) does not affect sleep and wakefulness in the rat, suggesting that pharmacological agonism of these receptors may not influence sleep. Further research is needed to verify whether new drugs acting on these receptors lack of effect upon sleep and wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niswender C, Conn P. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010;50:295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicoletti F, Bockaert J, Collingridge G, Conn P, Ferraguti F, Schoepp D, et al. Metabotropic glutamate receptors: from the workbench to the bedsite. Neuropharmacology 2011;60:1017–41.

    Article  CAS  PubMed  Google Scholar 

  3. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997;17:7503–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cartmell J, Schoepp D. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 2000;75:889–907.

    Article  CAS  PubMed  Google Scholar 

  5. Schoepp D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 2001;299:12–20.

    CAS  PubMed  Google Scholar 

  6. Lavreysen H, Dautzenberg F. Therapeutic potential of group III metabotropic glutamate receptors. Curr Med Chem 2008;15:671–84.

    Article  CAS  PubMed  Google Scholar 

  7. Nicoletti F, Bruno V, Ngomba R, Gradini R, Battaglia G. Metabotropic glutamate receptors as drug targets: what’s new? Curr Opin Pharmacol 2016;20:89–94.

    Article  CAS  Google Scholar 

  8. Mercier M, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014;39:1876–94.

    Article  CAS  PubMed  Google Scholar 

  9. Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008;1129:275–86.

    Article  CAS  PubMed  Google Scholar 

  10. España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845–58.

    PubMed  PubMed Central  Google Scholar 

  11. Luppi PH, Clément O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol 2013;23:786–92.

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg I, Campbell I. Ketamine administration during waking increases delta EEG intensity in rat sleep. Neuropsychopharmacology 1993;9:41–8.

    Article  CAS  PubMed  Google Scholar 

  13. Campbell I, Feinberg I. Noncompetitive NMDA channel blockade during waking intensely stimulates NREM delta. J Pharmacol Exp Ther 1996;276:737–42.

    CAS  PubMed  Google Scholar 

  14. Lopez-Rodriguez F, Medina-Ceja L, Wilson CL, Jhung CL, Morales-Villagram A. Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness. Arch Med Res 2007;38:52–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kodama T, Lai YY, Siegel JM. Enhanced glutamate release during REM sleep in the rostromedial medulla as measured by in vivo microdialysis. Brain Res 1998;780:178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Datta S, Spoley EE, Patterson EH. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 2001;280:752–9.

    Article  Google Scholar 

  17. Ahnaou A, Dautzenberg FM, Geys H, Imogai H, Gibelin A, Moechars D, et al. Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture. Eur J Pharmacol 2009;603:62–72.

    Article  CAS  PubMed  Google Scholar 

  18. Dong E, Wellman LL, Yang L, Sanford LD. Effects of microinjections of Group II metabotropic glutamate agents into the amygdala on sleep. Brain Res 2012;1452:85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feinberg I, Campbell IG, Schoepp DD, Anderson K. The selective group mGlu2/3 receptor agonist LY379268 suppresses REM sleep and fast EEG in the rat. Pharmacol Biochem Behav 2002;73:467–74.

    Article  CAS  PubMed  Google Scholar 

  20. Feinberg I, Shoepp DD, Hsieh KC, Darchia N, Campbell IG. The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist LY379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in rats. J Pharmacol Exp Ther 2005;312:826–33.

    Article  CAS  PubMed  Google Scholar 

  21. Fell MJ, Witkin JM, Falcone JF, Katner JS, Perry KW, Hart J, et al. N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes. J Pharmacol Exp Ther 2011;336:165–77.

    Article  CAS  PubMed  Google Scholar 

  22. Hikichi H, Hiyoshi T, Marumo T, Tomishima Y, Kaku A, Iida I, et al. Anti psychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J Pharmacol Sci 2015;127:352–61.

    Article  CAS  PubMed  Google Scholar 

  23. Ahnaou A, Lavreysen H, Tresadern G, Cid JM, Drinkenburg WH. MGlu2 receptor agonism, but not positive allosteric modulation, elicits rapid tolerance towards their primary efficacy on sleep measures in rats. PLoS One 2015;10:e0144017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ahnaou A, de Boer P, Lavreysen H, Huysmans H, Sinha V, Raeymaekers L, et al. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men. Neuropharmacology 2016;103:290–305.

    Article  CAS  PubMed  Google Scholar 

  25. Ahnaou A, Ver Donck L, Drinkenburg WH. Blockade of the metabotropic glutamate (mGluR2) modulates arousal through vigilance states transitions: evidence from sleep-wake EEG in rodents. Behav Brain Res 2014;270:56–67.

    Article  CAS  PubMed  Google Scholar 

  26. Parmentier-Batteur S, O’Brien JA, Doran S, Nguyen SJ, Flick RB, Uslaner JM, et al. Differential effects of the mGluR5 positive allosteric modulator CDPPB in the cortex and striatum following repeated administration. Neuropharmacology 2012;62:1453–60.

    Article  CAS  PubMed  Google Scholar 

  27. Ahnaou A, Langlois X, Steckler T, Bartolome-Nebreda JM, Drinkenburg WH. Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats. Psychopharmacology 2015;232:1107–22.

    Article  CAS  PubMed  Google Scholar 

  28. Gilmour G, Broad LM, Wafford KA, Britton T, Colvin EM, Fivush A, et al. In vitro characterisation of the novel positive allosteric modulators of the mGlu5 receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat. Neuropharmacology 2013;64:224–39.

    Article  CAS  PubMed  Google Scholar 

  29. Cavas M, Scesa G, Navarro JF. Effects of MPEP, a selective metabotropic glutamate mglu5 ligand, on sleep and wakefulness in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2013;40:18–25.

    Article  CAS  PubMed  Google Scholar 

  30. Ahnaou A, Raeymaekers L, Steckler T, Drinkenbrug WH. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (−/−) mice. Behav Brain Res 2015;282:218–26.

    Article  CAS  PubMed  Google Scholar 

  31. Cavas M, Scesa G, Navarro JF. Positive allosteric modulation of mGlu7 receptors by AMN082 affects sleep and wakefulness in the rat. Pharmacol Biochem Behav 2013;103:756–63.

    Article  CAS  PubMed  Google Scholar 

  32. Ahnaou A, Raeyemaekers L, Huysmans H, Drinkenburg WH. Off-target potential of AMN082 on sleep EEG and related physiological variables: Evidence from mGluR7 (−/−) mice. Behav Brain Res 2016;311:287–97.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE. (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 2001;40:311–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cavas M, Beltrán D, Navarro JF. Behavioural effects of dimethylsulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett 2005;157:221–32.

    Article  CAS  PubMed  Google Scholar 

  35. Cavas M, Navarro JF. Effects of selective neuronal nitric oxide synthase inhibition on sleep and wakefulness in the rat. Prog Neuropsychopharmacol Biol Psychiat 2006;30:56–67.

    Article  CAS  Google Scholar 

  36. Cavas M, Navarro JF. Effects of L-741,741, a selective D4 dopamine receptor antagonist, on sleep-wake cycle in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:668–78.

    Article  CAS  PubMed  Google Scholar 

  37. Datta S, Hobson JA. The rat as an experimental model for sleep neurophysiology. Behav Neurosci 2000;114:1239–44.

    Article  CAS  PubMed  Google Scholar 

  38. Robert C, Guilpin G, Limoge A. Automated sleep staging systems in rats. J Neurosci Methods 1999;88:111–22.

    Article  CAS  PubMed  Google Scholar 

  39. Duvoisin RM, Zhang C, Ramonell K. A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J Neurosci 1995;15:3075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saugstad JA, Kinzie JM, Shinohara MM, Segerson TP, Westbrook GL. Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol 1997;51:119–25.

    Article  CAS  PubMed  Google Scholar 

  41. Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JDB, Szucs P, et al. Metabotropic glutamate receptor 8 expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 2005;25:10520–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navarro JF, de Castro V, Martín-López M. Behavioural profile of selective ligands for mGlu7 and mGlu8 glutamate receptors in agonistic encounters between mice. Psicothema 2009;21:475–9.

    PubMed  Google Scholar 

  43. Fendt M, Imobersteg S, Peterlik D, Chaperon F, Mattes C, Wittmann C, et al. Differential roles of mGlu(7) and mGlu(8) in amygdala-dependent behavior and physiology. Neuropharmacology 2013;72:215–23.

    Article  CAS  PubMed  Google Scholar 

  44. Dobi A, Sartori SB, Busti D, Van der Putten H, Singewald N, Shigemoto R, et al. Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice. Neuropharmacology 2013;66:274–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goddyn H, Callaerts-Vegh Z, D’Hooge R. Functional dissociation of group III metabotropic glutamate receptors revealed by direct comparison between the behavioral profiles of knockout mouse lines. Int J Neuropsychopharmacol 2015;18:pyv053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Folbergrová J, Druga R, Haugvicová R, Mares P, Otáhal J. Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 2008;54:665–75.

    Article  PubMed  CAS  Google Scholar 

  47. Pałucha A, Tatarczyńska E, Brański P, Szewczyk B, Wierońska JM, Kłak K, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004;46:151–9.

    Article  PubMed  CAS  Google Scholar 

  48. Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, et al. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 2002;43:251–9.

    Article  CAS  PubMed  Google Scholar 

  49. Duvoisin RM, Zhang C, Pfankuch TF, O’Connor H, Gayet-Primo J, Quraishi S, et al. Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci 2005;22:425–36.

    Article  PubMed  Google Scholar 

  50. Schmid S, Fendt M. Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology 2006;50:154–64.

    Article  CAS  PubMed  Google Scholar 

  51. Palazzo E, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids 2014;46:1441–8.

    CAS  PubMed  Google Scholar 

  52. Johnson KA, Jones CK, Tantawy MN, Bubser M, Marvanova M, Ansari MS, et al. The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson’s disease. Neuropharmacology 2013;66:187–95.

    Article  CAS  PubMed  Google Scholar 

  53. Moldrich RX, Beart PM, Jane DE, Chapman AG, Meldrum BS. Anticonvulsant activity of 3,4-dicarboxyphenylglycineds in DBA/2 mice. Neuropharmacology 2001;40:732–5.

    Article  CAS  PubMed  Google Scholar 

  54. Tang X, Liu X, Yang L, Sanford LD. Rat strain differences in sleep after acute mild stressors and short-term sleep loss. Behav Brain Res 2005;160:60–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cavas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavas, M., Scesa, G., Martín-López, M. et al. Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat. Pharmacol. Rep 69, 97–104 (2017). https://doi.org/10.1016/j.pharep.2016.09.019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.09.019

Keywords

Navigation