Skip to main content
Log in

Risperidone and escitalopram co-administration: A potential treatment of schizophrenia symptoms with less side effects

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms often accompanied by depression and cognitive deficits. Positive symptoms, like delusions and hallucinations are caused by an excess of dopamine (DA) signaling and are treated with the second generation antipsychotic drugs. Negative symptoms of schizophrenia are represented by social withdrawal, apathy and blunted emotional response. It was demonstrated that co-administration of risperidone and selective serotonin reuptake inhibitors alleviated depressive symptoms and cognitive dysfunction in animal models of schizophrenia. Moreover, combination of fluoxetine or mirtazapine with risperidone increased DA and 5-hydroxytryptamine (5-HT) release in the rat frontal cortex more potently than either drug given separately. The present study aimed to investigate whether combination of risperidone and escitalopram is effective in increasing DA and 5-HT release.

Methods

The extracellular level of neurotransmitters in the rat frontal cortex and nucleus accumbens was examined using microdialysis in freely moving animals. The dialysate concentration of DA and 5-HT was assayed by HPLC.

Results

It was found that risperidone (0.2 and 1 mg/kg) and escitalopram (5 and 10 mg/kg) given together significantly increased cortical DA and 5-HT levels and were more efficient in enhancing neurotransmitter concentrations than any single-drug treatment. A similar effect on DA and 5-HT release was observed in the nucleus accumbens after administration of risperidone (1 mg/kg) and escitalopram (5 mg/kg).

Conclusions

The present study demonstrates that co-administration of risperidone and escitalopram may be used to treat positive and negative symptoms of schizophrenia and will allow to minimize the drugs’ side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iancu I, Tschernikowsky E, Bodner E, Piconne AS, Lowengrub K. Escitalopram in the treatment of negative symptoms in patients with chronic schizophrenia: a randomized double-blind placebo-controlled trial. Psychiatry Res 2010;179:19–23.

    Article  CAS  Google Scholar 

  2. Mao YM, Zhang MD. Augmentation with antidepressants in schizophrenia treatment: benefit or risk. Neuropsychiatr Dis Treat 2015;11:701–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh SP, Singh V, Kar N, Chan K. Efficacy of antidepressants in treating the negatie symptoms of chronic schizophrenia: meta-analysis. Br J Psychiatry 2010;197:174–9.

    Article  Google Scholar 

  4. Meltzer HY, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. In: Di Giovannin G, Di Matteo V, Esposito E, editors. Prog Brain Res. BV: Elsevier; 2008. p. 177–97.

    Google Scholar 

  5. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl) 1996;124:57–73.

    Article  CAS  Google Scholar 

  6. Aghajanian GK, Marek GJ. Serotonin Model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 2000;31:302–12.

    Article  CAS  Google Scholar 

  7. Fiorella D, Helsley S, Rabin RA, Winter JC. The interactions of typical and atypical antipsychotics with the (-)2,5-dimethoxy-4-methamphetamine (DOM) discriminative stimulus. Neuropharmacology 1995;34:1297–303.

    CAS  PubMed  Google Scholar 

  8. Marek GJ, Carpenter LL, McDougle C, Price LH. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 2003;28:402–12.

    Article  CAS  Google Scholar 

  9. Marder SR, Meibach RC. Risperidone in the treatment of schizophrenia. Am J Psychiatry 1994;151:825–35.

    Article  CAS  Google Scholar 

  10. Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999;21(suppl. (2)):106S–15S.

    Article  CAS  Google Scholar 

  11. Rogóż Z, Kamińska K. The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacol Rep 2016;68:116–20.

    Article  Google Scholar 

  12. Marcus MM, Jardemark K, Malmerfelt A, Gertow J, Konradsson-Geuken Å, Svensson TH. Augmentation by escitalopram, but not citalopram or R-citalopram, of the effects of low-dose risperidone: behavioral, biochemical, and electrophysiological evidence. Synapse 2012;66:277–90.

    Article  CAS  Google Scholar 

  13. Kamińska K, Rogóż Z. The effect of combined treatment with risperidone and antidepressants on the MK-801-induced deficits in the social interaction test in rats. Pharmacol Rep 2015;67:1183–7.

    Article  Google Scholar 

  14. Huang M, Ichiwaka J, Li Z, Dai J, Meltzer HY. Augmentation by citalopram of risperidone-induced monoamine release in rat prefrontal cortex. Psychopharmacology (Berl) 2006;185:274–81.

    Article  CAS  Google Scholar 

  15. Kalivas PW, Duffy P, Barrow J. Regulation of the mesocorticolimbic dopamine system by glutamic acid receptor subtypes. J Pharmacol Exp Ther 1989;251:378–87.

    CAS  PubMed  Google Scholar 

  16. Kamińska K, Gołembiowska K, Rogóż Z. Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacol Rep 2013;65:1144–51.

    Article  Google Scholar 

  17. Koch S, Perry KW, Bymaster FP. Brain region and dose effects of an olanzapine/ fluoxetine combination on extracellular monoamine concentrations in the rat. Neuropharmacology 2004;46:232–42.

    Article  CAS  Google Scholar 

  18. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press; 1998.

    Google Scholar 

  19. Meltzer HY. Mechanism of action of atypical antipsychotic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropharmacology: The Fifth Generation of Progress, vol. 58. Am Coll Neuropharmacol; 2002. p. 819–31.

  20. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY. 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001;76:1521–31.

    Article  CAS  Google Scholar 

  21. Cartmell J, Perry KW, Salhoff CR, Monn JA, Schoepp DD. Acute increases in monoamine release in the rat prefrontal cortex by the mGlu2/3 agonist LY379268 are similar in profile to risperidone, not locally mediated, and can be elicited in the presence of uptake blockade. Neuropharmacology 2001;40:847–55.

    Article  CAS  Google Scholar 

  22. Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 2000;68:29–39.

    Article  CAS  Google Scholar 

  23. De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U. Constitutive activity of the serotonergic2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. Neuroscience 2004;24:3235–41.

    Article  Google Scholar 

  24. Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E. SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 1999;38:1195–205.

    Article  Google Scholar 

  25. Del Arco A, Mora F. Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 2008;90:226–35.

    Article  Google Scholar 

  26. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. Expression of serotonin2a receptors in pyramidal and gabaergic neurons of the rat prefrontal cortex. Cereb Cortex 2004;14:1100–9.

    Article  Google Scholar 

  27. Wadenberg M-LG, Soliman A, VanderSpek SC, Kapur S. Dopamine d(2) receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 2001;25:633–41.

    Article  CAS  Google Scholar 

  28. Hertel P, Nomikos GG, Schilström B, Arborelius L, Svensson TH. Risperidone dose-dependently increases extracellular concentrations of serotonin in the rat frontal cortx: role of α2-adrenoceptor antagonism. Neuropsychopharmacology 1997;17:44–55.

    Article  CAS  Google Scholar 

  29. Schilström B, Konradsson-Geuken A, Ivanov V, Gertow J, Feltmann K, Marcus MM, et al. Effects of S-citalopram, citalopram and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, NMDA receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat. Synapse 2011;65:357–73.

    Article  Google Scholar 

  30. Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, et al. Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology (Berl) 2002;160:353–61.

    Article  CAS  Google Scholar 

  31. Tanda G, Carboni E, Frau R, Di Chiara G. Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology (Berl) 1994;115:288.

    Article  Google Scholar 

  32. Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, et al. Postsynaptic 5-hydroxytryptamine1A receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 2000;129:1028–34.

    Article  CAS  Google Scholar 

  33. Wędzony K, Maćkowiak M, Fijał K, Gołembiowska K. Ipsapirone enhances the dopamine outflow via 5-HT1A receptors in the rat prefrontal cortex. Eur J Pharmacol 1996;305:73–8.

    Article  Google Scholar 

  34. Pehek E, Nocjar C, Roth B, Byrd T, Mabrouk O. Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 2006;31:265–77.

    Article  CAS  Google Scholar 

  35. Kamińska K, Gołembiowska K, Rogóż Z. The effect of risperidone on mirtazapine-induced changes in extracellular monoamines in the rat frontal cortex. Pharmacol Rep 2014;66:984–90.

    Article  Google Scholar 

  36. Rogóż Z. Effect of co-treatment with mirtazapine and risperidone in animal models of the positive symptoms of schizophrenia in mice. Pharmacol Rep 2012;64:1567–72.

    Article  Google Scholar 

  37. Rogóż Z. Effect of combined treatment with mirtazapine and risperidone on the MK-801-induced changes in the object recognition test in mice. Pharmacol Rep 2013;65:1401–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Gołembiowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamińska, K., Noworyta-Sokołowska, K., Jurczak, A. et al. Risperidone and escitalopram co-administration: A potential treatment of schizophrenia symptoms with less side effects. Pharmacol. Rep 69, 13–21 (2017). https://doi.org/10.1016/j.pharep.2016.09.010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.09.010

Keywords

Navigation