Skip to main content
Log in

Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model

  • Original Research Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Antiarrhythmic and antiepileptic drugs share some mechanisms of actions. Therefore, possibility of interactions between these in epileptic patients with cardiac arrhythmias is quite considerable. Herein, we attempted to assess interactions between propafenone and four conventional antiepileptic drugs: carbamazepine, valproate, phenytoin and phenobarbital.

Methods

Effects of propafenone on seizures were determined in the electroconvulsive threshold test in mice. Interactions between propafenone and antiepileptic drugs were estimated in the model of maximal electroshock. Motor coordination was evaluated in the chimney test, while long-term memory in the passive-avoidance task. Brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay.

Results

Propafenone up to 50 mg/kg did not affect the electroconvulsive threshold, significantly enhancing this parameter at doses of 60–90 mg/kg. Applied at its subthreshold doses, propafenone potentiated the antielectroshock action of all four tested classical antiepileptics: carbamazepine, valproate, phenytoin, and phenobarbital. Propafenone alone and in combinations with antiepileptics impaired neither motor performance nor long-term memory in mice. Propafenone did not change brain concentration of phenytoin and phenobarbital; however, it significantly decreased brain levels of carbamazepine and increased those of valproate.

Conclusions

Propafenone exhibits its own anticonvulsant effect and enhances the action of classical antiepileptic drugs against electrically induced convulsions in mice. Further investigations are required to determine the effect of propafenone on antiepileptic therapy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scholz H. Classification and mechanism of action of antiarrhythmic drugs. Fundam Clin Pharmacol 1994;8(5):385–90.

    Article  CAS  PubMed  Google Scholar 

  2. von Philipsborn G, Gries J, Hofmann HP, Kreiskott H, Kretzschmar R, Müller CD, et al. Pharmacological studies on propafenone and its main metabolite 5-hydroxypropafenone. Arzneimittelforschung 1984;34(11):1489–97.

    Google Scholar 

  3. D’Orazio JL, Curtis JA. Overdose of propafenone surreptitiously sold as Percocet. J Emerg Med 2011;41(2):172–5.

    Article  PubMed  Google Scholar 

  4. Borowicz KK, Banach M. Antiarrhythmic drugs and epilepsy. Pharmacol Rep 2014;66(4):545–51.

    Article  CAS  PubMed  Google Scholar 

  5. Benarroch EE. HCN channels: function and clinical implications. Neurology 2013;80(3):304–10.

    Article  PubMed  Google Scholar 

  6. Roubille F, Tardif JC. New therapeutic targets in cardiology, heart failure and arrhythmia: HCN channels. Circulation 2013;127(19):1620–9.

    Article  Google Scholar 

  7. Lipkind GM, Fozzard HA. Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Mol Pharmacol 2010;78(4):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 2010;9(4):413–24.

    Article  CAS  PubMed  Google Scholar 

  9. Farber NB, Jiang XP, Heinkel C, Nemmers B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol Psychiatry 2002;7(7):726–33.

    Article  CAS  PubMed  Google Scholar 

  10. Jallon P. Epilepsy and the heart. Rev Neurol (Paris) 1997;153(3):173–84.

    CAS  Google Scholar 

  11. Castel-Branco MM, Alves GL, Figueiredo IV, Falcão AC, Caramona MM. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drug. Methods Find Exp Clin Pharmacol 2009; 31(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  12. Borowicz KK, Banach M, Zarczuk R, íukasik D, íuszczki JJ, Czuczwar SJ. Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Psychopharmacology 2007;195(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  13. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96(2):99–113.

    CAS  PubMed  Google Scholar 

  14. Boissier JR, Tardy J, Diverres JC. Une nouvelle methode simple pour explorer l’action tranquilisante: le test de la cheminee. Med Exp (Basel) 1960;3:81–4.

    Article  CAS  Google Scholar 

  15. Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, Bergmann JF. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev 2015;3:CD005049.

    Google Scholar 

  16. Chimienti M, Cullen Jr. MT, Casadei G. Safety of flecainide versus propafenone for the long-term management of symptomatic paroxysmal supraventricular tachyarrhythmias. Report from the Flecainide and Propafenone Italian Study (FAPIS) Group. Eur Heart J 1995;16(12):1943–51.

    CAS  PubMed  Google Scholar 

  17. Ito N, Tashiro T, Morishige N, Nishimi M, Hayashida Y, Takeuchi K, et al. Efficacy of propafenone hydrochloride in preventing postoperative atrial fibrillation after coronary artery bypass grafting. Heart Surg Forum 2010; 13(4):E223–7.

    Article  PubMed  Google Scholar 

  18. Kowey PR, Yannicelli D, Investigators Amsterdam ECOPPA-II. Effectiveness of oral propafenone for the prevention of atrial fibrillation after coronary artery bypass grafting. Am J Cardiol 2004;94(5):663–5.

    Article  CAS  PubMed  Google Scholar 

  19. Meinertz T, Lip GY, Lombardi F, Sadowski ZP, Kalsch B, Camez A, et al. ERAFT Investigators. Efficacy and safety of propafenone sustained release in the prophylaxis of symptomatic paroxysmal atrial fibrillation (The European Rythmol/Rytmonorm Atrial Fibrillation Trial [ERAFT] Study). Am J Cardiol 2002;90(12):1300–6.

    Article  CAS  PubMed  Google Scholar 

  20. Zehender M, Hohnloser S, Geibel A, Furtwangler A, Olschewski M, Meinertz T, et al. Short-term and long-term treatment with propafenone: determinants determinants of arrhythmia suppression, persistence of efficacy, arrhythmogenesis, and side effects in patients with symptoms. Br Heart J 1992;67(6): 491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gulizia M, Mangiameli S, Orazi S, Chiarandà G, Piccione G, Di Giovanni N, et al. PITAGORA Study Investigators. A randomized comparison of amiodarone and class IC antiarrhythmic drugs to treat atrial fibrillation in patients paced for sinus node disease: the Prevention Investigation and Treatment: A Group for Observation and Research on Atrial arrhythmias (PITAGORA) trial. Am Heart J 2008;155(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  22. Fernández J, Lligoña L, Puigdemont A, Guitart R, Riu JL, Arboix M. Tissue distribution of propafenone in the rat after intravenous administration. Eur J Drug Metab Pharmacokinet 1991;16(1):23–7.

    Article  PubMed  Google Scholar 

  23. Latini R, Marchi S, Riva E, Cavalli A, Cazzaniga MG, Maggioni AP, et al. Distribution of propafenone and its active metabolite, 5-hydroxypropafenone, in human tissues. Am Heart J 1987;113(3):843–4.

    Article  CAS  PubMed  Google Scholar 

  24. Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epilepsia 1995;36(Suppl 2):S2–12.

    Article  CAS  PubMed  Google Scholar 

  25. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, et al. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 2010;38:D237–43. Database issue.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou SF, Zhou ZW, Yang LP, Cai JP. Substrates, inducers, inhibitors and structure- activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem 2009;16(27):3480–675.

    Article  CAS  PubMed  Google Scholar 

  27. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006;2(6):875–94.

    Article  CAS  PubMed  Google Scholar 

  28. Reagan-Shaw S, Nihal M, Ahmad N. Dos translation from animal to human studies revisited. FASEB J 2007;22(3):659–62.

    Article  PubMed  Google Scholar 

  29. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011;20(5):359–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga K. Borowicz-Reutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banach, M., Piskorska, B. & Borowicz-Reutt, K.K. Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol. Rep 68, 555–560 (2016). https://doi.org/10.1016/j.pharep.2016.01.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.01.002

Keywords

Navigation