Skip to main content

Advertisement

Log in

A novel synthetic novobiocin analog, FM-Nov17, induces DNA damage in CML cells through generation of reactive oxygen species

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Objectives

To investigate the cytotoxicity of FM-Nov17 against chronic myeloid leukemia (CML) cells, we explored its underlying mechanisms mediating the induction of DNA damage and apoptotic cell death by reactive oxygen species (ROS).

Methods

MTT assays were used to measure the proliferation-inhibition ratio of K562 and K562/G01 cells. Flow cytometry (FCM) was used to test the level of extracellular ROS, DNA damage, cell cycle progression and apoptosis. Western blotting was used to verify the amount of protein.

Results

FM-Nov17 significantly inhibited the proliferation of K562 cells, with an IC50 of 58.28 ± 0.304 μM, and K562/G01 cells, with an IC50 of 62.36 ± 0.136 μM. FM-Nov17 significantly stimulated the generation of intracellular ROS, followed by the induction of DNA damage and the activation of the ATM–p53–r-H2AX pathway and checkpoint-related signals Chk1/Chk2, which led to increased numbers of cells in the S and G2/M phases of the cell cycle. Furthermore, FM-Nov17 induced apoptotic cell death by decreasing mitochondrial membrane potential and activating caspase-3 and PARP. The above effects were all prevented by the ROS scavenger N-acetylcysteine.

Conclusions

FM-Nov17-induces DNA damage and mitochondria-dependent cellular apoptosis in CML cells. The process is mediated by the generation of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–7.

    Article  CAS  Google Scholar 

  2. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876–80.

    Article  CAS  Google Scholar 

  3. Von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002;359:487–91.

    Article  Google Scholar 

  4. Perl A, Carroll M. BCR-ABL kinase is dead; long live the CML stem cell. J Clin Invest 2011;121:22–5.

    Article  CAS  Google Scholar 

  5. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011;121:396–409.

    Article  CAS  Google Scholar 

  6. Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 2008;7:1875–84.

    Article  CAS  Google Scholar 

  7. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006;10:241–52.

    Article  CAS  Google Scholar 

  8. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms: intermediacy of H2O2- and p53-dependent pathways. J Bio Chem 2004;279:25535–43.

    Article  CAS  Google Scholar 

  9. Brem R, Li F, Montaner B, Reelfs O, Karran P. DNA breakage and cell cycle checkpoint abrogation induced by a therapeutic thiopurine and UVA radiation. Oncogene 2010;29:3953–63.

    Article  CAS  Google Scholar 

  10. Mroz RM, Schins RP, Li H, Jimenez LA, Drost EM, Holownia A, et al. Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways. Eur Respir J 2008;31:241–51.

    Article  CAS  Google Scholar 

  11. Ko CH, Shen SC, Hsu CS, Chen YC. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol 2005;69:913–27.

    Article  CAS  Google Scholar 

  12. Lu HF, Hsueh SC, Ho YT, Kao MC, Yang JS, Chiu TH, et al. ROS mediates baicalin-induced apoptosis in human promyelocytic leukemia HL-60 cells through the expression of the Gadd153 and mitochondrial-dependent pathway. Anticancer Res 2007;27:117–25.

    CAS  PubMed  Google Scholar 

  13. Wu LX, Xu JH, Zhang KZ, Lin Q, Huang XW, Wen CX, Chen YZ. Disruption of the Bcr-Abl/Hsp90 protein complex: a possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin. Leukemia 2008;22:1402–9.

    Article  CAS  Google Scholar 

  14. Rowley R, Kort L. Novobiocin, nalidixic acid, etoposide, and 4′-(9-acridinylamino) methanesulfon-m-anisidide effects on G2 and mitotic Chinese hamster ovary cell progression. Cancer Res 1989;49:4752–7.

    CAS  PubMed  Google Scholar 

  15. Smith PJ, Bell SM. A DNA topoisomerase II-independent route. Cancer Chemother Pharmacol 1990;26:257–62.

    Article  CAS  Google Scholar 

  16. Duan P, You G. Novobiocin is a potent inhibitor for human organic anion transporters. Drug Metab Dispos 2009;37:1203–10.

    Article  CAS  Google Scholar 

  17. Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 2005;65:6640–50.

    Article  CAS  Google Scholar 

  18. Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 2013;41:8995–9005.

    Article  CAS  Google Scholar 

  19. Wu L, Shao L, An N, Wang J, Pazhanisamy S, Feng W, et al. IKKb regulates the repair of DNA double-strand breaks induced by ionizing radiation in MCF-7 breast cancer cells. PLoS ONE 2011;6:e18447.

    Article  CAS  Google Scholar 

  20. Kuo LJ, Yang LX. Gamma-H2AX — a novel biomarker for DNA double-strand breaks. In Vivo 2008;22:305–9.

    CAS  PubMed  Google Scholar 

  21. Qi J, Peng H, Gu ZL, Liang ZQ, Yang CZ. Establishment of an imatinib resistant cell line K562/G01 and its characterization. Chin J Hematol 2004;25:337–41.

    CAS  Google Scholar 

  22. Ermolaeva MA, Segref A, Dakhovnik A, Ou HL, Schneider JI, Utermöhlen O, et al. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 2013;501:416–20.

    Article  CAS  Google Scholar 

  23. Hanot M, Boivin A, Malésys C, Beuve M, Colliaux A, Foray N, et al. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny. PLoS ONE 2012;7:e44367.

    Article  CAS  Google Scholar 

  24. Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. ATM controls meiotic double-strand-break formation. Nature 2011;479:237–40.

    Article  CAS  Google Scholar 

  25. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol 2012;12:645–60.

    Google Scholar 

  26. Hepel M, Stobiecka M, Peachey J, Miller J. 1ntervention of glutathione in premutagenic catechol-mediated DNA damage in the presence of copper(II) ions. Mutat Res 2012;735:1–11.

    Article  CAS  Google Scholar 

  27. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011;475:231–4.

    Article  CAS  Google Scholar 

  28. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009;458:780–3.

    Article  CAS  Google Scholar 

  29. Hu L, Kim TM, Son MY, Kim SA, Holland CL, Tateishi S, et al. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 2013;501:569–72.

    Article  CAS  Google Scholar 

  30. Müller R, Misund K, Holien T, Bachke S, Gilljam KM, Våtsveen TK, et al. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells. PLOS ONE 2013;8:e70430.

    Article  Google Scholar 

  31. Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, et al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 2013;498:246–50.

    Article  CAS  Google Scholar 

  32. Martin OA, Ivashkevich A, Choo S, Woodbine L, Jeggo PA, Martin RF, et al. Statistical analysis of kinetics, distribution and co-localisation of DNA repair foci in irradiated cells: Cell cycle effect and implications for prediction of radiosensitivity. DNA Repair 2013;12:844–55.

    Article  CAS  Google Scholar 

  33. Tu WZ, Li B, Huang B, Wang Y, Liu XD, Guan H, et al. γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett 2013;587:3437–43.

    Article  CAS  Google Scholar 

  34. Zhao H, Halicka HD, Li J, Biela E, Berniak K, Dobrucki J, et al. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytometry A 2013;83:979–88.

    Article  Google Scholar 

  35. Bekker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 2010;9:1219–28.

    Article  CAS  Google Scholar 

  36. Peterson CL, Almouzni G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb Perspect Biol 2013;5(9).

  37. Gospodinov A, Herceg Z. Chromatin structure in double strand break repair. DNA Repair (Amst) 2013;12:800–10.

    Article  CAS  Google Scholar 

  38. Heijink AM, Krajewska M, van Vugt MA. The DNA damage response during mitosis. Mutat Res 2013;750:45–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Huang, L., Tian, J. et al. A novel synthetic novobiocin analog, FM-Nov17, induces DNA damage in CML cells through generation of reactive oxygen species. Pharmacol. Rep 68, 423–428 (2016). https://doi.org/10.1016/j.pharep.2015.11.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.11.002

Keywords

Navigation