Skip to main content
Log in

Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Despite that gentamicin is a very effective aminoglycoside, its potential ototoxicity which is of irreversible nature makes a challenge and limitation for its use. This study was designed to investigate possible neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity.

Methods and results

Twenty pigmented guinea pigs were divided into four equal groups, where group I served as normal control group. The other groups received gentamicin (120 mg/kg/day, ip) for 19 days where group II given vehicle of 1% CMC, group III and group IV were pre-treated 2 h before gentamicin by 4-methylcatechol (10 μg/kg, ip) and silymarin (100 mg/kg, oral gavage), respectively. The main findings indicated that silymarin exhibited restoration of nerve growth factor (NGF) levels and increased tropomyosin-related kinase receptors-A (Trk-A) m-RNA expression in cochlear tissue and preservation of hair cells of organ of Corti by scanning electron microscopy (SEM) with significant decrease in auditory brainstem response (ABR) threshold compared to 4-methylcatechol. Only silymarin caused significant amelioration in oxidative stress state by reducing malondialdehyde (MDA) levels and increasing catalase activity.

Conclusions

Silymarin exerts superiority over 4-methylcatechol when recommended as protective agent against gentamicin ototoxicity based on its efficient neurotrophic and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 2003;16(3):430–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aminoglycosides. Brunton LL, Parker LK, editors. Goodman & Gilman’s manual of pharmacology and therapeutics. 11th ed., New York: McGraw-Hill; 2008. p. 751–61.

  3. Begg EJ, Barclay ML. Aminoglycosides – 50 years on. Br J Clin Pharmacol 1995;39(6):597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalinec GM, Fernandez-Zapico ME, Urrutia R, Esteban-Cruciani N, Chen S, Kalinec F. Pivotal role of Harakiri in the induction and prevention of gentamicin-induced hearing loss. Proc Natl Acad Sci U S A 2005;102(44):16019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dehne N, Rauen U, de Groot H, Lautermann J. Involvement of the mitochondrial permeability transition in gentamicin ototoxicity. Hear Res 2002;169(1–2): 47–55.

    Article  CAS  PubMed  Google Scholar 

  6. Perletti G, Vral A, Patrosso MC, Marras E, Ceriani I, Willems P, et al. Prevention and modulation of aminoglycoside ototoxicity (Review). Mol Med Rep 2008;1(1):3–13.

    CAS  PubMed  Google Scholar 

  7. Sinswat P, Wu WJ, Sha SH, Schacht J. Protection from ototoxicity of intraperitoneal gentamicin in guinea pig. Kidney Int 2000;58(6):2525–32.

    Article  CAS  PubMed  Google Scholar 

  8. Aran JM, Darrouzet J. Observation of click-evoked compound VIII nerve responses before, during, and over seven months after kanamycin treatment in the guinea pig. Arch Otolaryngol 1975;79(1–2):24–32.

    Article  CAS  Google Scholar 

  9. Fausti SA, Henry JA, Schaffer HI, Olson DJ, Frey RH, McDonald WJ. High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity. J Infect Dis 1992;165(6):1026–32.

    Article  CAS  PubMed  Google Scholar 

  10. Evans P, Halliwell B. Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci 1999;884:19–40.

    Article  CAS  PubMed  Google Scholar 

  11. Priuska EM, Clark K, Pecoraro V, Schacht J. NMR spectra of iron-gentamicin complexes and the implications for aminoglycoside toxicity. Inorg Chim Acta 1998;273:85–91.

    Article  CAS  Google Scholar 

  12. Sha SH, Schacht J. Formation of reactive oxygen species following bioactivation of gentamicin. Free Radic Biol Med 1999;26(3–4):341–7.

    Article  CAS  PubMed  Google Scholar 

  13. Rizzi MD, Hirose K. Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 2007;15(5):352–7.

    Article  PubMed  Google Scholar 

  14. Kovacic P, Somanathan R. Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 2008;70(5):914–23.

    Article  CAS  PubMed  Google Scholar 

  15. Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B. Oxidative stress in the cochlea: an update. Curr Med Chem 2010;17(30): 3591–604.

    Article  CAS  PubMed  Google Scholar 

  16. Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011;2011:937861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 2001;11(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  18. Levi-Montalcini R, Angeletti PU. Nerve growth factor. Physiol Rev 1968;48(3): 534–69.

    Article  CAS  PubMed  Google Scholar 

  19. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol 1994;25(11):1386–403.

    Article  CAS  PubMed  Google Scholar 

  20. Ginty DD, Segal RA. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr Opin Neurobiol 2002;12(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  21. Yamasoba T, Schacht J, Shoji F, Miller JM. Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Res 1999;815(2):317–25.

    Article  CAS  PubMed  Google Scholar 

  22. Shoji F, Miller AL, Mitchell A, Yamasoba T, Altschuler RA, Miller JM. Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss. Hear Res 2000;146(1–2):134–42.

    Article  CAS  PubMed  Google Scholar 

  23. McGuinness SL, Shepherd RK. Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol 2005;26(5):1064–72.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov 2005;4(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  25. Price RD, Milne SA, Sharkey J, Matsuoka N. Advances in small molecules promoting neurotrophic function. Pharmacol Ther 2007;115(2):292–306.

    Article  CAS  PubMed  Google Scholar 

  26. Hamman JH, Enslin GM, Kotzé AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs 2005;19(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  27. Lallemend F, Hadjab S, Hans G, Moonen G, Lefebvre PP, Malgrange B. Activation of protein kinase CbetaI constitutes a new neurotrophic pathway for deaf-ferented spiral ganglion neurons. J Cell Sci 2005;118(Pt 19):4511–25.

    Article  CAS  PubMed  Google Scholar 

  28. Gazák R, Walterová D, Kren V. Silybin and silymarin – new and emerging applications in medicine. Curr Med Chem 2007;14(3):315–38.

    Article  PubMed  Google Scholar 

  29. La Grange L, Wang M, Watkins R, Ortiz D, Sanchez ME, Konst J, et al. Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J Ethnopharmacol 1999;65(1):53–61.

    Article  PubMed  Google Scholar 

  30. Kittur S, Wilasrusmee S, Pedersen WA, Mattson MP, Straube-West K, Wilas-rusmee C, et al. Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture. J Mol Neurosci 2002;18(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wang MJ, Lin WW, Chen HL, Chang YH, Ou HC, Kuo JS, et al. Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur J Neurosci 2002;16(11):2103–12.

    Article  PubMed  Google Scholar 

  32. Sehitoğlu MA, Uneri C, Celikoyar MM, Uneri A. Surgical anatomy of the guinea pig middle ear. Ear Nose Throat J 1990;69(2):91–7.

    PubMed  Google Scholar 

  33. Tan CT, Hsu CJ, Lee SY, Liu SH, Lin-Shiau SY. Potentiation of noise-induced hearing loss by amikacin in guinea pigs. Hear Res 2001;161(1–2):72–80.

    Article  CAS  PubMed  Google Scholar 

  34. Song BB, Anderson DJ, Schacht J. Protection from gentamicin ototoxicity by iron chelators in guinea pig in vivo. J Pharmacol Exp Ther 1997;282(1): 369–77.

    CAS  PubMed  Google Scholar 

  35. Kaechi K, Furukawa Y, Ikegami R, Nakamura N, Omae F, Hashimoto Y, et al. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system. J Pharmacol Exp Ther 1993;264(1):321–6.

    CAS  PubMed  Google Scholar 

  36. Kaechi K, Ikegami R, Nakamura N, Nakajima M, Furukawa Y, Furukawa S. 4-Methylcatechol, an inducer of nerve growth factor synthesis, enhances peripheral nerve regeneration across nerve gaps. J Pharmacol Exp Ther 1995;272(3):1300–4.

    CAS  PubMed  Google Scholar 

  37. Breschi MC, Martinotti E, Apostoliti F, Nieri P. Protective effect of silymarin in antigen challenge- and histamine-induced bronchoconstriction in in vivo guinea-pigs. Eur J Pharmacol 2002;437(1–2):91–5.

    Article  CAS  PubMed  Google Scholar 

  38. Boigk G, Stroedter L, Herbst H, Waldschmidt J, Riecken EO, Schuppan D. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology 1997;26:643–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lieu T, Kollarik M, Myers AC, Undem BJ. Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Physiol Lung Cell Mol Physiol 2011;300(5): L790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991;196(2–3):143–51.

    Article  CAS  PubMed  Google Scholar 

  41. Yagi K. Assay for blood plasma or serum. Methods Enzymol 1984;105:328–31.

    Article  CAS  PubMed  Google Scholar 

  42. Bozzola JJ, Russel LD, editors. Electron Microscopy Principles and Techniques for Biologists, Ch:7, The Scanning Electron Microscope. 2nd ed., Boston: Jones and Bartlett Publisher; 1999. p. 202.

  43. Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007;13(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Huang WG, Zha DJ, Qiu JH, Wang JL, Sha SH, et al. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic. HearRes 2007;226(1–2): 178–82.

    Article  CAS  PubMed  Google Scholar 

  45. Freeman RS, Burch RL, Crowder RJ, Lomb DJ, Schoell MC, Straub JA, et al. NGF deprivation-induced gene expression: after ten years, where do westand. Prog Brain Res 2004;146:111–26.

    Article  CAS  PubMed  Google Scholar 

  46. Levi-Montalcini R. The nerve growth factor and the neuroscience chess board. Prog Brain Res 2004;146:525–7.

    PubMed  Google Scholar 

  47. Hendry IA, Stöckel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor. Brain Res 1974;68(1):103–21.

    Article  CAS  PubMed  Google Scholar 

  48. Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci 1992;15(9):323–31.

    Article  CAS  PubMed  Google Scholar 

  49. Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol 2000;61(2):205–29.

    Article  CAS  PubMed  Google Scholar 

  50. Taiwo YO, Levine JD, Burch RM, Woo JE, Mobley WC. Hyperalgesia induced in the rat by the amino-terminal octapeptide of nerve growth factor. Proc Natl Acad Sci U S A 1991;88(12):5144–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pérez-Pérez M, García-Suárez O, Esteban I, Germanà A, Fariñas I, Naves FJ, et al. p75NTR in the spleen: age-dependent changes, effect of NGF and 4-methyl-catechol treatment, and structural changes in p75NTR-deficient mice. Anat Rec A Discov Mol Cell Evol Biol 2003;270(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  52. Sometani A, Nomoto H, Nitta A, Furukawa Y, Furukawa S. 4-Methylcatechol stimulates phosphorylation of Trk family neurotrophin receptors and MAP kinases in cultured rat cortical neurons. J Neurosci Res 2002;70(3):335–9.

    Article  CAS  PubMed  Google Scholar 

  53. Cho SI, Lee JE, Do NY. Protective effect of silymarin against cisplatin-induced ototoxicity. Int J Pediatr Otorhinolaryngol 2014;78(3):474–8.

    Article  PubMed  Google Scholar 

  54. Nisticò G, Ciriolo MR, Fiskin K, Iannone M, De Martino A, Rotilio G. NGF restores decrease in catalase and increases glutathione peroxidase activity in the brain of aged rats. Neurosci Lett 1991;130(1):117–9.

    Article  PubMed  Google Scholar 

  55. Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intra-cellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995;65(4):1740–51.

    Article  CAS  PubMed  Google Scholar 

  56. Korsak K, Dolatshad NF, Silva AT, Saffrey MJ. Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes. Chem Cent J 2012;6(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dugan LL, Creedon DJ, Johnson EM, Holtzman DM. Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 1997;94(8):4086–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zelck U, Nowak R, Karnstedt U, Koitschev A, Käcker N. Specific activities of antioxidative enzymes in the cochlea of guinea pigs at different stages of development. Eur Arch Otorhinolaryngol 1993;250(4):218–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sha SH, Schacht J. Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res 1999;128(1–2):112–8.

    Article  CAS  PubMed  Google Scholar 

  60. Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, Nakayama M, Hara A. Ototoxicity: mechanisms of cochlear impairment and its prevention. Curr Med Chem 2011;18(31):4866–71.

    Article  CAS  PubMed  Google Scholar 

  61. Das SK, Mukherjee S, Vasudevan DM. Medicinal properties of milk thistle with special reference to silymarin – an overview. NPR 2008;7(2):182–92.

    Google Scholar 

  62. Hirose M, Fukushima S, Kurata Y, Tsuda H, Tatematsu M, Ito N. Modification of N-methyl-N’-nitro-N-nitrosoguanidine-induced forestomach and glandular stomach carcinogenesis by phenolic antioxidants in rats. Cancer Res 1988;48(18):5310–5.

    CAS  PubMed  Google Scholar 

  63. Hirose M, Yamaguchi S, Fukushima S, Hasegawa R, Takahashi S, Ito N. Promotion by dihydroxybenzene derivatives of N-methyl-N’-nitro-N-nitrosoguani-dine-induced F344 rat forestomach and glandular stomach carcinogenesis. Cancer Res 1989;49(18):5143–7.

    CAS  PubMed  Google Scholar 

  64. Furihata C, Oguchi S, Matsushima T. Possible tumor-initiating and -promoting activity of p-methylcatechol and methylhydroquinone in the pyloric mucosa of rat stomach. Jpn J Cancer Res 1993;84(3):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asakawa E, Hirose M, Hagiwara A, Takahashi S, Ito N. Carcinogenicity of 4-methoxyphenol and 4-methylcatechol in F344 rats. Int J Cancer 1994;56(1): 146–52.

    Article  CAS  PubMed  Google Scholar 

  66. Morita K, Arimochi H, Ohnishi Y. In vitro cytotoxicity of 4-methylcatechol in murine tumor cells: induction of apoptotic cell death by extracellular pro-oxidant action. J Pharmacol Exp Ther 2003;306(1):317–23.

    Article  CAS  PubMed  Google Scholar 

  67. Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 1998;93(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  68. Jacobs BP, Dennehy C, Ramirez G, Sapp J, Lawrence VA. Milk thistle for the treatment of liver disease: a systematic review and meta-analysis. Am J Med 2002;113(6):506–15.

    Article  PubMed  Google Scholar 

  69. Lee YS, Jang KA, Cha JD. Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. J Biomed Biotechnol 2012;2012:618081.

    PubMed  Google Scholar 

  70. Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 2011;49(4):396–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany A. Abdin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draz, E.I., Abdin, A.A., Sarhan, N.I. et al. Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs. Pharmacol. Rep 67, 317–325 (2015). https://doi.org/10.1016/j.pharep.2014.10.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.10.007

Keywords

Navigation