Skip to main content
Log in

Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

In the present study we determined the role of transient receptor potential V1 channel (TRPV1) and acid-sensing ion channel 3 (ASIC3) in chronic nociception.

Methods

1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine TRPV1 and ASIC3 expression in dorsal root ganglia.

Results

Peripheral ipsilateral, but not contralateral, pre-treatment (−10 min) with the TRPV1 receptor antagonists capsazepine (0.03–0.3 μM/paw) and A-784168 (0.01–1 μM/paw) prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Likewise, peripheral ipsilateral, but not contralateral, pre-treatment with the non-selective and selective ASIC3 blocker benzamil (0.1–10 μM/paw) and APETx2 (0.02–2 μM/paw), respectively, prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Peripheral ipsilateral post-treatment (day 6 after formalin injection) with capsazepine (0.03–0.3 μM/paw) and A-784168 (0.01–1 μM/paw) reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. In addition, peripheral ipsilateral post-treatment with benzamil (0.1–10 μM/paw) and APETx2 (0.02–2 μM/paw), respectively, reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. TRPV1 and ASIC3 proteins were expressed in dorsal root ganglion in normal conditions, and 1% formalin injection increased expression of both proteins in this location at 1 and 6 days compared to naive rats.

Conclusions

Data suggest that TRPV1 and ASIC3 participate in the development and maintenance of long-lasting secondary allodynia and hyperalgesia induced by formalin in rats. The use of TRPV1 and ASIC3 antagonists by peripheral administration could prove useful to treat chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

ASICs:

acid-sensing ion channels

ASIC1a:

acid-sensing ion channel 1a

ASIC2:

acid-sensing ion channel 2

ASIC3:

acid-sensing ion channel 3

A-784168:

(1-[3-(trifluoromethyl)pyridin-2-yl]-N-[4-(trifluoromethylsulfonyl)phenyl]-1,2,3,6-tetrahydropyridine-4-carboxamide

Bemzamil:

(N-(benzylamidino)-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride hydrate

CGRP:

calcitonin gene-related peptide

PAGE:

polyacrylamide gel electrophoresis

PVDF:

polyvinylidene difluoride membranes

TRPV1:

transient receptor potential V1 channel

References

  1. Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA 1999;96:7723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A protongated cation channel involved in acid-sensing. Nature 1997;386:173–7.

    Article  CAS  PubMed  Google Scholar 

  3. Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 2002;22:10662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, et al. Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 2007;27:11139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferreira J, Santos AR, Calixto JB. Antinociception produced by systemic, spinal and supraspinal administration of amiloride in mice. Life Sci 1999;65:1059–66.

    Article  CAS  PubMed  Google Scholar 

  6. Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB. Acid-induced pain and its modulation in humans. J Neurosci 2004;24:10974–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 2003;106:229–39.

    Article  CAS  PubMed  Google Scholar 

  8. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Ann Rev Neurosci 2001;24:487–517.

    Article  CAS  PubMed  Google Scholar 

  9. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  10. Ohta T, Ikemi Y, Murakami M, Imagawa T, Otsuguro K, Ito S. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 2006;576:809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loyd DR, Weiss G, Henry MA, Hargreaves KM. Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 2011;152:2267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983;16:109–10.

    Article  CAS  PubMed  Google Scholar 

  13. Ambriz-Tututi M, Rocha-González HI, Castaneda-Corral G, Araiza-Saldana CI, Caram-Salas NL, Cruz SL, et al. Role of opioid receptors in the reduction of formalin-induced secondary allodynia and hyperalgesia in rats. Eur J Pharmacol 2009;619:25–32.

    Article  CAS  PubMed  Google Scholar 

  14. Fu KY, Light AR, Maixner W. Long-lasting inflammation and long-term hyperalgesia after subcutaneous formalin injection into the rat hindpaw. J Pain 2001;2:2–11.

    Article  CAS  PubMed  Google Scholar 

  15. Valencia-de Ita S, Lawand NB, Lin Q, Castaneda-Hernández G, Willis WD. Role of the Na+–K+–2Cl cotransporter in the development of capsaicin-induced neurogenic inflammation. J Neurophysiol 2006;95:3553–61.

    Article  CAS  Google Scholar 

  16. Kanai Y, Hara T, Imai A. Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodoresiniferatoxin. J Pharm Pharmacol 2006;58:489–93.

    Article  CAS  PubMed  Google Scholar 

  17. Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci 2006;26:9385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mills CD, Nguyen T, Tanga FY, Zhong C, Gauvin DM, Mikusa J, et al. Characterization of nerve growth factor-induced mechanical and thermal hypersensitivity in rats. Eur J Pain 2013;17:469–79.

    Article  CAS  PubMed  Google Scholar 

  19. Quiding H, Jonzon B, Svensson O, Webster L, Reimfelt A, Karin A, et al. TRPV1 antagonistic analgesic effect: a randomized study of AZD1386 in pain after third molar extraction. Pain 2013;154:808–12.

    Article  CAS  PubMed  Google Scholar 

  20. Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N. Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol Pharm Bull 2011;34:1105–8.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz ES, La JH, Scheff NN, Davis BM, Albers KM, Gebhart GF. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 2013;33:5603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shields SD, Cavanaugh DJ, Lee H, Anderson DJ, Basbaum AI. Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain 2010;151:422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tsujino HI, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 2000;15:170–82.

    Article  CAS  PubMed  Google Scholar 

  24. Page AJ, Brierley SM, Martin CM, Hughes PA, Blackshaw LA. Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain 2007;133:150–60.

    Article  CAS  PubMed  Google Scholar 

  25. Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 2004;23:1516–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grinstein S, Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol 1986;90:1–12.

    Article  CAS  PubMed  Google Scholar 

  27. Frelin C, Barbry P, Vigne P, Chassande O, Cragoe Jr EJ, Lazdunski M. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie 1988;70:1285–90.

    Article  CAS  PubMed  Google Scholar 

  28. Reithmeier RA. Mammalian exchangers and co-transporters. Curr Opin Cell Biol 1994;6:583–94.

    Article  CAS  PubMed  Google Scholar 

  29. Castañeda-Corral G, Rocha-González HI, Araiza-Saldaña CI, Vidal-Cantú GC, Jiménez-Andrade JM, Murbartián J, et al. Blockade of peripheral and spinal Na+/H+ exchanger increases formalin-induced long-lasting mechanical allodynia and hyperalgesia in rats. Brain Res 2012;1475:19–30.

    Article  PubMed  CAS  Google Scholar 

  30. Izumi M, Ikeuchi M, Ji Q, Tani T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 2012;19:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Staniland AA, McMahon SB. Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain 2009;13:554–63.

    Article  CAS  PubMed  Google Scholar 

  32. Ikeuchi M, Kolker SJ, Sluka KA. Acid-sensing ion channel 3 expression in mouse knee joint afferents and effects of carrageenan-induced arthritis. J Pain 2009;10:336–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walder RY, Rasmussen LA, Rainier JD, Light AR, Wemmie JA, Sluka KA. ASIC1 and ASIC3 play different roles in the development of hyperalgesia after inflammatory muscle injury. J Pain 2010;11:210–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chen WH, Tzen JT, Hsieh CL, Chen YH, Lin TJ, Chen SY, et al. Attenuation of TRPV1 and TRPV4 expression and function in mouse inflammatory pain models using electroacupuncture. Evid Based Complement Alternat Med 2012;2012:636848.

    PubMed  PubMed Central  Google Scholar 

  35. Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, et al. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol Pain 2008;4:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen WH, Hsieh CL, Huang CP, Lin TJ, Tzen JT, Ho TY, et al. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain. J Biomed Sci 2011;18:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang D, Yu B. The mirror-image pain: an uncleared phenomenon and its possible mechanism. Neurosci Biobehav Rev 2010;34:528–32.

    Article  PubMed  Google Scholar 

  38. Schreiber KL, Beitz AJ, Wilcox GL. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett 2008;440:63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wieseler-Frank J, Maier SF, Watkins LR. Central proinflammatory cytokines and pain enhancement. Neurosignals 2005;14:166–74.

    Article  CAS  PubMed  Google Scholar 

  40. Nakanishi M, Hata K, Nagayama T, Sakurai T, Nishisho T, Wakabayashi H, et al. Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK–CREB cascade: a potential mechanism of inflammatory pain. Mol Biol Cell 2010;21:2568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kajihara Y, Murakami M, Imagawa T, Otsuguro K, Ito S, Ohta T. Histamine potentiates acid-induced responses mediating transient receptor potential V1 in mouse primary sensory neurons. Neuroscience 2010;166:292–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicio Granados-Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Rojas, V.A., Barragán-Iglesias, P., Rocha-González, H.I. et al. Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia. Pharmacol. Rep 66, 964–971 (2014). https://doi.org/10.1016/j.pharep.2014.06.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.06.011

Keywords

Navigation