Skip to main content

Advertisement

Log in

Antinociceptive effect of d-Lys2, Dab4 N-(ureidoethyl)amide, a new cyclic 1-4 dermorphin/deltorphin analog

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

A preliminary evaluation of antinociceptive activity of a new cyclic dermorphin/deltorphin tetrapeptide analog restricted via a urea bridge and containing C-terminal ureidoethylamid {[H-Tyr-d-Lys(&1)-Phe-Dab(&2)-CH2CH2NHCONH2][&1CO&2]} (cUP-1) revealed a significant and long-lasting increase of pain threshold to thermal stimulation after systemic application. The current studies were aimed at further evaluation of cUP-1 activity in animal models of somatic and visceral pain. The influence of cUP-1 on motor functions was also investigated.

Methods

The influence of cUP-1 (0.5–2 mg kg−1, iv) on nociceptive threshold to mechanical pressure and analgesic efficacy in formalin and acetic acid-induced writhing tests were estimated. The antinociceptive effect of cUP-1 was compared to that of morphine (MF). The influence of cUP-1 (1, 4 and 8 mg kg−1, iv) on locomotor activity, motor coordination and muscle strength was estimated using open field and rota-rod tests and a grip strength measurement.

Results

Administration of cUP-1 in doses of 1 and 2 mg kg−1 elicited a significant increase of nociceptive threshold to mechanical pressure. MF applied in the same doses induced an antinociceptive effect only at the higher dose (2 mg kg−1). There were no marked differences between the effect of cUP-1 and MF at each dose, at relative time points. In the writhing test and both phases of the formalin test, cUP-1 showed a significant, dose-dependent antinociceptive effect which did not markedly differ from that of MF. cUP-1 did not significantly affect motor functions of mice.

Conclusions

Systemic application of cUP-1 elicited a dose-dependent antinociceptive effect. The analgesic efficacy of cUP-1 on mechanical nociception, visceral and formalin-induced pain was comparable to that of MF. cUP-1 did not impair motor functions of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherny N, Ripamonti C, Pereira J, Davis C, Fallon M, McQuay H, et al. Strategies to manage the adverse effects of oral morphine: an evidence-based report. J Clin Oncol 2001;19(9):2542–54.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson PR. Complications of opiate pharmacotherapy. Semin Pain Med 2004;2(4):228–32.

    Article  CAS  Google Scholar 

  3. Kreil G, Barra D, Simmaco M, Erspamer V, Erspamer GF, Negri L, et al. Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for delta opioid receptors. Eur J Pharmacol 1989;162(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  4. Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 1981;17(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  5. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, et al. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA 1989;86:5188–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melchiorri P, Negri L, Falconieri-Erspamer G, Severini C, Corsi R, Soaje M, et al. Structure–activity relationship of the d-opioid-selective agonists, deltorphins. Eur J Pharmacol 1991;195:201–7.

    Article  CAS  PubMed  Google Scholar 

  7. Broccardo M, Erspamer V, Falconieri-Erspamer G, Improta G, Linari G, Melchiorri P, et al. Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin. Br J Pharmacol 1981;73(3):625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kisara K, Sakurada S, Sakurada T, Sasaki Y, Sato T, Suzuki K, et al. Dermorphin analogues containing d-kyotorphin: structure–antinociceptive relationships in mice. Br J Pharmacol 1986;87(1):183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Negri L, Lattanzi R, Melchiorri P. Production of antinociception by peripheral administration of [Lys7]dermorphin, a naturally occurring peptide with high affinity for mu-opioid receptors. Br J Pharmacol 1995;114(1):57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lazarus LH, Bryant SD, Cooper PS, Salvadori S. What peptides these deltorphins be. Prog Neurobiol 1999;57(4):377–420.

    Article  CAS  PubMed  Google Scholar 

  11. Negri L, Melchiorri P, Lattanzi R. Pharmacology of amphibian opiate peptides. Peptides 2000;21:1639–47.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng PY, Wu D, Decena J, Soong Y, McCabe S, Szeto HH. Opioid-induced stimulation of fetal respiratory activity by [d-Ala2]deltorphin I. Eur J Pharmacol 1993;230(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  13. Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 1984;230(2):341–8.

    CAS  PubMed  Google Scholar 

  14. Sheldon RJ, Rivière PJ, Malarchik ME, Moseberg HI, Burks TF, Porreca F. Opioid regulation of mucosal ion transport in the mouse isolated jejunum. J Pharmacol Exp Ther 1990;253(1):144–51.

    CAS  PubMed  Google Scholar 

  15. Cowan A, Zhu XZ, Mosberg HI, Omnaas JR, Porreca F. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther 1988;246(3):950–5.

    CAS  PubMed  Google Scholar 

  16. Fiori A, Cardelli P, Negri L, Savi MR, Strom R, Erspamer V. Deltorphin transport across the blood–brain barrier. Proc Natl Acad Sci USA 1997;94(17):9469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Negri L, Improta G. Distribution and metabolism of dermorphin in rats. Pharmacol Res Commun 1984;16:1183–94.

    Article  CAS  PubMed  Google Scholar 

  18. Chaki K, Kawamura S, Kisara K, Sakurada S, Sakurada T, Sasaki Y, et al. Antinociception and physical dependence produced by [d-Arg2] dermorphin tetrapeptide analogues and morphine in rats. Br J Pharmacol 1988;95(1):15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aldrich JV, McLaughlin JP. Opioid peptides: potential for drug development. Drug Discov Today Technol 2012;9(1):e23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizoguchi H, Bagetta G, Sakurada T, Sakurada S. Dermorphin tetrapeptide analogs as potent and long-lasting analgesics with pharmacological profiles distinct from morphine. Peptides 2001;1(32):421–7.

    Google Scholar 

  21. Berezowska I, Chung NN, Lemieux C, Wilkes BC, Schiller PW. Cyclic dermorphin tetrapeptide analogues obtained via ring-closing metathesis. Acta Biochim Pol 2006;53(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ciarkowski J, Zieleniak A, Rodziewicz-Motowidło S, Rusak Ł, Chung NN, Czaplewski C, et al. Deltorphin analogs restricted via a urea bridge: structure and opioid activity. Adv Exp Med Biol 2009;611:491–2.

    Article  CAS  PubMed  Google Scholar 

  23. Filip K, Oleszczuk M, Pawlak D, Wójcik J, Chung NN, Schiller PW, et al. Potent side-chain to side-chain cyclized dermorphin analogues containing a carbonyl bridge. J Pept Sci 2003;9:649–57.

    Article  CAS  PubMed  Google Scholar 

  24. Filip K, Oleszczuk M, Wójcik J, Chung NN, Schiller PW, Pawlak D, et al. Cyclic enkephalin and dermorphin analogues containing a carbonyl bridge. J Pept Sci 2005;11:347–52.

    Article  CAS  PubMed  Google Scholar 

  25. Pawlak D, Chung NN, Schiller PW, Izdebski J. Synthesis of a novel side-chain to side-chain cyclized enkephalin analogue containing a carbonyl bridge. J Pept Sci 1997;3:277–81.

    Article  CAS  PubMed  Google Scholar 

  26. Pawlak D, Oleszczuk M, Wójcik J, Pachulska M, Chung NN, Schiller PW, et al. Highly potent side-chain to side-chain cyclized enkephalin analogues containing a carbonyl bridge: synthesis, biology and conformation. J Pept Sci 2001; 7:128–40.

    Article  CAS  PubMed  Google Scholar 

  27. Perlikowska R, do-Rego JC, Cravezic A, Fichna J, Wyrebska A, Toth G, et al. Synthesis and biological evaluation of cyclic endomorphin-2 analogs. Peptides 2010;31(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  28. Ro S, Zhu Q, Lee CW, Goodman M, Darlak K, Spatola AF, et al. Highly potent side chain-main chain cyclized dermorphin–deltorphin analogues: an integrated approach including synthesis, bioassays, NMR spectroscopy and molecular modeling. J Pept Sci 1995;3:157–74.

    Article  Google Scholar 

  29. Rodziewicz-Motowidło S, Czaplewski C, Luczak S, Ciarkowski J. Conformation– activity relationships of cyclo-constrained µ/δ opioid agonists derived from the N-terminal tetrapeptide segment of dermorphin/deltorphin. J Pept Sci 2008;14(8):898–902.

    Article  PubMed  CAS  Google Scholar 

  30. Said-Nejad OE, Felder ER, Mierke DF, Yamazaki T, Schiller PW, Goodman M. 14-membered cyclic opioids related to dermorphin and their partially retroinverso modified analogues. I. Synthesis and biological activity. Int J Pept Protein Res 1992;39:145–60.

    Article  CAS  PubMed  Google Scholar 

  31. Schiller PW, Weltrowska G, Nguyen TM, Wilkes BC, Chung NN, Lemieux C. Conformationally restricted deltorphin analogues. J Med Chem 1992;35(21): 3956–61.

    Article  CAS  PubMed  Google Scholar 

  32. Witkowska E, Nowakowski M, Oleszczuk M, Filip K, Ciszewska M, Chung NN, et al. Ureido group containing cyclic dermorphin(1–7) analogues: synthesis, biology and conformation. J Pept Sci 2007;13:519–28.

    Article  CAS  PubMed  Google Scholar 

  33. Zieleniak A, Rodziewicz-Motowidło S, Rusak L, Chung NN, Czaplewski C, Witkowska E, et al. Deltorphin analogs restricted via a urea bridge: structure and opioid activity. J Pept Sci 2008;14(7):830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kotlinska J, Bochenski M, Lagowska-Lenard M, Gibula-Bruzda E, Witkowska E, Izdebski J. Enkephalin derivative, cyclo[Nepsilon, Nbeta-carbonyl-d-Lys2, Dap5] enkephalinamide (cUENK6), induces a highly potent antinociception in rats. Neuropeptides 2009;43:221–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kotlinska JH, Gibula-Bruzda E, Witkowska E, Chung NN, Schiller PW, Izdebski J. Antinociceptive effects of two deltorphins analogs in the tail-immersion test in rats. Peptides 2013;39:103–10.

    Article  CAS  PubMed  Google Scholar 

  36. Bańkowski K, Witkowska E, Michalak OM, Sidoryk K, Szymanek E, Antkowiak B, et al. Synthesis, biological activity and resistance to proteolytic digestion of new cyclic dermorphin/deltorphin analogues. Eur J Med Chem 2013;63C:457–67.

    Article  CAS  Google Scholar 

  37. Ciszewska M, Kwasiborska M, Nowakowski M, Oleszczuk M, Wójcik J, Chung NN, et al. N-(ureidoethyl)amides of cyclic enkephalin analogs. J Pept Sci 2009;15(4):312–8.

    Article  CAS  PubMed  Google Scholar 

  38. Anseloni VC, Ennis M, Lidow MS. Optimization of the mechanical nociceptive threshold testing with the Randall–Selitto assay. J Neurosci Methods 2003;131(1–2):93–7.

    Article  PubMed  Google Scholar 

  39. Randall LO, Selitto JJ. A method for measurement of analgesic activity of inflammed tissue. Arch Int Pharmacodyn Ther 1957;111:409–15.

    CAS  PubMed  Google Scholar 

  40. Wheeler-Aceto H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain 1990;40:229–38.

    Article  CAS  PubMed  Google Scholar 

  41. Koster R, Anderson M, DeBeer EJ. Acetic acid for analgesic screening. Fed Proc 1959;18:412.

    Google Scholar 

  42. Tallarida RJ, Murray RB. Manual of pharmacologic calculations with computer programs. 2nd ed. New York: Springer Verlag; 1986.

    Book  Google Scholar 

  43. Royce JR. On the construct validity of open-field measures. Psychol Bull 1977;84(6):1098–106.

    Article  Google Scholar 

  44. Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 1957;46:208–9.

    Article  CAS  Google Scholar 

  45. Usenko AB, Emel’yanova TG, Myasoedov NF. Dermorphins are natural opioids with unique primary structure that determines their biological specificity. Biol Bull 2002;29:154–64.

    Article  CAS  Google Scholar 

  46. Ambo A, Niizuma H, Sasaki A, Kohara H, Sasaki Y. Dermorphin tetrapeptide analogues with 2′,6′-dimethylphenylalanine (Dmp) substituted for aromatic amino acids have high mu opioid receptor binding and biological activities. Bioorg Med Chem Lett 2003;13(7):1269–72.

    Article  CAS  PubMed  Google Scholar 

  47. Chaki K, Sakurada S, Sakurada T, Sato T, Kawamura S, Kisara K, et al. Comparison of the antinociceptive effects of new [d-Arg2]-dermorphin tetrapeptide analogs and morphine in mice. Pharmacol Biochem Behav 1988;31: 439–44.

    Article  CAS  PubMed  Google Scholar 

  48. Chiba T, Murase H, Ambo A, Sasaki Y. Antinociceptive activity of deltorphin analogs in the formalin test. Life Sci 1996;59(20):1717–22.

    Article  CAS  PubMed  Google Scholar 

  49. Hammond DL, Wang H, Nakashima N, Basbaum AI. Differential effects of intrathecally administered delta and mu opioid receptor agonists on formalinevoked nociception and on the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 1998;284(1):378–87.

    CAS  PubMed  Google Scholar 

  50. Holdridge SV, Cahill CM. Spinal administration of a delta opioid receptor agonist attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Eur J Pain 2007;11:685–93.

    Article  CAS  PubMed  Google Scholar 

  51. Łabuz D, Chocyk A, Wędzony K, Toth G, Przewłocka B. Endomorphin-2, deltorphin II and their analogs suppress formalin-induced nociception and c-Fos expression in the rat spinal cord. Life Sci 2003;73(4):403–12.

    Article  PubMed  CAS  Google Scholar 

  52. Łabuz D, Toth G, Machelska H, Przewłocka B, Borsodi A, Przewłocki R. Antinociceptive effects of isoleucine derivatives of deltorphin I and deltorphin II in rat spinal cord: a search for selectivity of delta receptor subtypes. Neuropeptides 1998;32(6):511–7.

    Article  PubMed  Google Scholar 

  53. Mika J, Przewłocki R, Przewłocka B. The role of delta-opioid receptor subtypes in neuropathic pain. Eur J Pharmacol 2001;415(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  54. Otis V, Sarret P, Gendron L. Spinal activation of delta opioid receptors alleviates cancer-related bone pain. Neuroscience 2011;183:221–9.

    Article  CAS  PubMed  Google Scholar 

  55. Piekielna J, Perlikowska R, Gach K, Janecka A. Cyclization in opioid peptides. Curr Drug Targets 2013;14(7):798–816.

    Article  CAS  PubMed  Google Scholar 

  56. Ciszewska M, Ruszczyńska K, Oleszczuk M, Chung NN, Witkowska E, Schiller PW, et al. Cyclic enkephalin-deltorphin hybrids containing a carbonyl bridge: structure and opioid activity. Acta Biochim Pol 2011;58(2):225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontani G, Vergnani L, Salvadori S, Voglino N, Aloisi AM, Portaluppi F, et al. Effect of dermorphin on behavior and hippocampal electrical activity in rabbits. Life Sci 1993;52(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  58. Puglisi-Allegra S, Castellano C, Filibeck U, Oliverio A, Melchiorri P. Behavioural data on dermorphins in mice. Eur J Pharmacol 1982;82(3–4):223–7.

    Article  CAS  PubMed  Google Scholar 

  59. Usenko AB, Uranova MG, Emel’yanova TG, Andreeva LA, Alfeeva LYu, Kamenskii AA, et al. Effects of dermorphin and its analogues on spontaneous behavior in white rats. Dokl Biol Sci 2000;370:36–9.

    CAS  PubMed  Google Scholar 

  60. Meyer ME, McLaurin BI, Meyer ME. DALDA (H-Tyr-d-Arg-Phe-Lys-NH2), a potent mu-opioid peptide agonist, affects various patterns of locomotor activities. Pharmacol Biochem Behav 1995;51(1):149–51.

    Article  CAS  PubMed  Google Scholar 

  61. Yang YR, Lee EH, Chiu TH. Electrophysiological and behavioral effects of Tyr-d-Arg-Phe-Sar on locus coeruleus neurons of the rat. Eur J Pharmacol 1998; 351(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  62. Longoni R, Spina L, Mulas A, Carboni E, Garau L, Melchiorri P, et al. (d-Ala2)-deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J Neurosci 1991;11(6):1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Negri L, Noviello V, Angelucci F. Behavioural effects of deltorphins in rats. Eur J Pharmacol 1991;209(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  64. Fontani G, Vergnani L, Salvadori S, Voglino N, Aloisi AM, Portaluppi F, et al. Effect of deltorphin on behavior and hippocampal electrical activity in rabbits. Physiol Behav 1993;53:285–90.

    Article  CAS  PubMed  Google Scholar 

  65. Negri L, Noviello L, Noviello V. Antinociceptive and behavioral effects of synthetic deltorphin analogs. Eur J Pharmacol 1996;296(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  66. Beaudry H, Proteau-Gagné A, Li S, Dory Y, Chavkin C, Gendron L. Differential noxious and motor tolerance of chronic delta opioid receptor agonists in rodents. Neuroscience 2009;161(2):381–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Antkowiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antkowiak, B., Paluch, M., Ciechanowska, M. et al. Antinociceptive effect of d-Lys2, Dab4 N-(ureidoethyl)amide, a new cyclic 1-4 dermorphin/deltorphin analog. Pharmacol. Rep 66, 600–605 (2014). https://doi.org/10.1016/j.pharep.2014.01.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.01.007

Keywords

Navigation