Skip to main content

Advertisement

Log in

Local and landscape influences on the habitat occupancy of the endangered maned sloth Bradypus torquatus within fragmented landscapes

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The transformation of natural landscapes in extensive anthropogenic areas has significantly affected ecological processes, and studies that evaluate such changes are essential for the definition of conservation strategies. In this study, we sought to identify the variables influencing the occupancy of Atlantic forest fragments by the endemic and endangered maned sloth. We selected 33 sampling stations, distributed at least 500 m apart throughout the municipality of Santa Maria de Jetibá—ES, Brazil. We sampled each station five times to verify the presence or absence of the species and to collect local variables. Using GIS tools, we defined a buffer of 200 m around each fragment and calculated the landscape metrics. After analysis of collinearity, we selected six variables variables – three three local variables, two at patch level and one at landscape level variables - three to assess their effect on the occupancy and detection probabilities. We selected models using AICc and calculated the weight of evidence and ratio of the models as well as the cumulative weight of each predictor variable. We detected the sloth in 48% of the stations. Its occupation was positively correlated to two variables on the local scale: Important Feeding Trees and Canopy height. Our results show that the maned sloth respond to fine local scale variables, but not to landscape structure. This is probably associated with the relatively high proportion of forest cover in the study area, but it also indicates the maned sloth flexibility to occupy fragmented landscape. Based on our results, we reinforce the unquestionable importance of local variables for species occupancy within fragmented landscapes, such as those related with the forest structure, and it is particularly important for strictly arboreal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén, H., 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366.

    Article  Google Scholar 

  • Araújo, L.S., Komonen, A., Lopes-Andrade, C, 2015. Influences of landscape structure on diversity of beetles associated with bracket fungi in Brazilian Atlantic forest. Biol. Conserv. 191, 659–666.

    Article  Google Scholar 

  • Arroyo-Rodríguez, V., Dias, PAD., 2010. Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am. J. Primatol. 72, 1–16.

    Article  PubMed  Google Scholar 

  • August, P.V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507.

    Article  Google Scholar 

  • Baddeley, A., Turner, R., 2005. SPATSTAT: an R package for analyzing spatial point pattern. J. Stat. Software 12, 1–42.

    Article  Google Scholar 

  • Bowers, M.A., Matter, S.F., 1997. Landscape ecology of mammals: relationships between density and patch size. J. Mammal. 78, 999–1013.

    Article  Google Scholar 

  • Bueno, R.S., Guevara, R., Ribeiro, M.C., Culot, L, Bufalo, F.S., Galetti, M., 2013. Functional redundancy and complementarities of seed dispersal by the last Neotropical megafrugivores. PLoS One 8, 1–10.

    Google Scholar 

  • Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference, second ed. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Cassano, C.R., Kierulff, M.C.M., Chiarello, A.G., 2011. The cacao agroforests of the Brazilian Atlantic forest as habitat for the endangered maned sloth Bradypus torquatus. Mamm. Biol. 76, 243–250.

    Google Scholar 

  • Castellón, T.D., Sieving, K.E., 2006. An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv. Biol. 20, 135–145.

    Article  PubMed  Google Scholar 

  • Centoducatte, L.D., 2011. Fragmentacão da Mata Atlântica e Conservacão do muriqui-do-norte, Brachyteles hypoxanthus (Primates, Atelidae). Universidade Federal do Espírito Santo (M. Sc. dissertation).

  • Chiarello, A., Moraes-Barros, N., 2014. Bradypus torquatus. The IUCN Red List of Threatened Species. Version 2014.2, https://doi.org/www.iucnredlist.org (19.06.2015).

  • Chiarello, A.G., Chivers, D.J., Bassi, C, Maciel, M.A.F., Moreira, L.S., Bazzalo, M., 2004. A translocation experiment for the conservation of maned sloths, Bradypus torquatus (Xenarthra, Bradypodidae). Biol. Conserv. 118, 421–430.

    Article  Google Scholar 

  • Chiarello, A.G., 1998a. Activity budgets and ranging patterns of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: bradypodidae). J. Zool. 246, 1–10.

    Article  Google Scholar 

  • Chiarello, A.G., 1998b. Diet of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: bradypodidae). J. Zool. 246, 11–19.

    Article  Google Scholar 

  • Chiarello, A.G., 2008. Sloth ecology: an overview of field studies. In: Vizcaíno, S.F., Loughry, W.J. (Ed.), The Biology of the Xenarthra. University Press of Florida, Gainesville, pp. 269–280.

    Google Scholar 

  • Climate-data, 2015. Climate: Santa Maria De Jetibá, https://doi.org/en.climate-data.org/location/43571 (31.01.2015).

  • Cooch, E.G., White, G.C., 2014. Program MARK—A Gentle Introduction. 13th ed. Dias, B.B., 2008. Área de vida e densidade populacional da preguica-de-coleira Bradypus torquatus (Pilosa: Bradypodidae) na Mata Atlântica da região serrana do Espírito Santo. Pontifícia Universidade Católica de Minas Gerais (M. Sc. dissertation).

  • ESRI, 2013. ArcGis, the Complete Geographical Information System. Redlands, California. https://doi.org/www.esri.com (10.10.2013).

  • Estes, G.M., Kuespert, D., 1976. Delphi in industrial forecasting. Chem. Eng. News, 40–47.

    Article  Google Scholar 

  • Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515.

    Article  Google Scholar 

  • Fortin, M.J., Dale, M.R.T., 2005. Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gascon, C, Lovejoy, T.E., Bierregaard Jr, R.O., Malcolm, J.R., Stouffer, P.C., Vasconcelos, H.L., Laurance, W.F., Zimmerman, B., Tocher, M., Borges, S., 1999. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91, 223–229.

    Article  Google Scholar 

  • Gentile, R., Fernandez, F.a.S., 1999. Influence of habitat structure on a streamside small mammal community in a Brazilian rural area. Mammalia 63, 29–40.

    Article  Google Scholar 

  • Giné, G.A.F., Cassano, C.R., Almeida, S.S., Faria, D., 2015. Activity budget, pattern and rhythm of maned sloths (Bradypus torquatus): responses to variations in ambient temperature. Mamm. Biol. 80, 459–467.

    Article  Google Scholar 

  • Gouveia, S.F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R., Ferrari, S.F., 2014. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530.

    Article  PubMed  Google Scholar 

  • Grelle, C.E.V., 2003. Forest structure and vertical stratification of small mammals in a secondary atlantic forest, Southeastern Brazil. Stud. Neotrop. Fauna Environ. 38, 81–85.

    Article  Google Scholar 

  • Hines, J.E., 2006. PRESENCE—Software to Estimate Patch Occupancy and Related Parameters Version 7.8. USGS-PWRC, https://doi.org/www.mbr-pwrc.usgs.gov/software/presence.html (10.10.2013).

  • Hirsch, A., Chiarello, A.G., 2012. The endangered maned sloth Bradypus torquatus of the Brazilian Atlantic forest: a review and update of geographical distribution and habitat preferences. Mamm. Rev. 42, 35–54.

    Article  Google Scholar 

  • Jose, S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1–10.

    Article  Google Scholar 

  • Kajin, M., Grelle, C.E.V., 2012. Microhabitat selection when detection is imperfect: the case of an endemic Atlantic forest mammal. Ecol. Res. 27, 1005–1013.

    Article  Google Scholar 

  • Laurance, W.F., Peres, C.A., 2006. Emerging Threats to Tropical Forests. University of Chicago Press.

  • Laurance, W.F., Vasconcelos, H.L., 2009. Consequências ecológicas da fragmentacão florestal na amazônia. Oecol. Bras. 13, 434–451.

    Article  Google Scholar 

  • Laurance, W.F., 2005. When bigger is better: the need for Amazonian mega-reserves. Trends Ecol. Evol. 20, 645–648.

    Article  PubMed  Google Scholar 

  • Laurance, W., 2008. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 41, 1731–1744.

    Article  Google Scholar 

  • Mackenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E., 2006. Occupancy Estimation and Modeling—Inferring Patterns and Dynamics of Species Occurrence, first ed. Academic Press, Boston.

    Google Scholar 

  • Martensen, A.C., Ribeiro, M.C., Banks-Leite, C, Prado, P.I., Metzger, J.P., 2012. Associations of forest cover fragment area, and connectivity with Neotropical understory bird species richness and abundance. Conserv. Biol. 26, 1100–1111.

    Article  PubMed  Google Scholar 

  • Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, H., Branthomme, A., 2005. Tropical forest cover change in the 1990 and options for future monitoring. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 373–384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes, S. L., 2006. Viabilidade populacional do muriqui, Brachyteles hypoxanthus (Primates, Atelidae), em fragmentos de Mata Atlântica no Estado do Espírito Santo—Fase II. Relatório Final.

  • Metzger, J.P., Martensen, A.C., Dixo, M., Bernacci, L.C., Ribeiro, M.C., Teixeira, A.M.G., Pardini, R., 2009. Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol. Conserv. 142, 1166–1177.

    Article  Google Scholar 

  • Moguel, P., Toledo, V.M., 1999. Biodiversity conservation in traditional coffee systems. Conserv. Biol. 13, 11–21.

    Article  Google Scholar 

  • Montgomery, G.G., Sunquist, M.E., 1975. Impact of sloths on Neotropical forest energy flow and nutrient cycling. In: Golley, F.B., Medina, E. (Ed.), Tropical Ecology Systems: Trends in Terrestrial and Aquatic Research. Springer-Verlog, Berlin, pp. 69–98.

    Chapter  Google Scholar 

  • Montgomery, G.G., 1978. Habitat selection and use by two and three-toed sloths. In: Montgomery, G.G. (Ed.), The Ecology of Arboreal Folivores. Smithsonian institution Press, Washington, pp. 329–359.

    Google Scholar 

  • Mukherjee, N., Huge, J., Sutherland, W.J., McNeil, J., Opstal, M.V., Dahdouh-Guebas, F., Koedan, N., 2015. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109.

    Article  Google Scholar 

  • Muylaert, R.L., Stevens, R.D., Ribeiro, M.C., 2016. Threshold effect of habitat loss on bat richness in Cerrado-forest landscapes. Ecol. Appl., 1–14.

  • Neteler, M., Mitasova, H., 2013. Open source GIS: a GRASS GIS approach. In: The International Series in Engineering and Computer Science, third edition. Springer, https://doi.org/grass.osgeo.org (22.02.2014).

  • Olivo, M.A., Zickel, C.S., Almeida Jr., E.B., 2006. Flora e fitossociologia do estrato herbáceo de uma restinga no nordeste do Brasil. An. da 58- Reun. Anu. da SBPC, Santa Catarina.

  • Pütz, S., Groeneveld,J., Alves, L.F., Metzger, J.P., Huth, A., 2011. Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol. Modell. 222, 1986–1997.

    Article  CAS  Google Scholar 

  • Peery, M.Z., Pauli, J.N., 2014. Shade-grown cacao supports a self-sustaining population of two-toed but not three-toed sloths. J. Appl. Ecol. 51, 162–170.

    Article  Google Scholar 

  • Prevedello, J.A., Vieira, M.V., 2010. Plantation rows as dispersal routes: a test with didelphid marsupials in the Atlantic Forest. Brazil. Biol. Conserv. 143, 131–135.

    Article  Google Scholar 

  • R Development Core Team, 2010. R: a Language and Environment for Statistical Computing (20.09.2014) https://doi.org/www.r-project.org.

  • Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153.

    Article  Google Scholar 

  • Richards, P.W., 1996. The Tropical Rain Forest: an Ecological Study. Cambridge University Press.

  • Ricketts, T.H., 2001. The matrix matters: effective isolation in fragmented landscapes. Am. Nat. 158, 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Ries, L, Debinski, D.M., 2001. Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J. Anim. Ecol. 70, 840–852.

    Article  Google Scholar 

  • Rodríguez, A., Andrén, J., Jansson, G., 2001. Habitat mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396.

    Article  Google Scholar 

  • Sanquetta, C.R., DallaCorte, A.P., Kovalek, N., 2011. Estrutura e composicão de copas e clareiras em um fragmento de Floresta Ombrófila Mista no centro-sul do Estado Paraná. Rev. Estud. Ambient. 13, 68–77.

    Google Scholar 

  • Santos, A.R., Júnior, H.C.A., Eugenio, F.C., 2012. Evolução da Cobertura Florestal no Município de Santa Maria de Jetibá –ES. Floresta e Ambiente 19, 296–307.

    Article  Google Scholar 

  • Silva, S.M., Summa,J.L., Summa, M.E.L., Geraldi, V.C., Belluci, M., Klefasz, A., Moraes-Barros, N., 2014. Contibution of wildlife governmental to conservation and biological study of sloths Bradypus variegatus.J. Nat. Conserv. 12, 79–85.

    Google Scholar 

  • Silva, L.G., Ribeiro, M.C., Hasui, É., da Costa, C.A., da Cunha, R.G.T., 2015. Patch size, functional isolation, visibility and matrix permeability influences neotropical primate occurrence within highly fragmented landscapes. PLoS One 10, 1–20.

    CAS  Google Scholar 

  • Tscharntke, T., Steffan-Dewenter, I., Kruess, A., Thies, C, 2002. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol. Appl. 12, 354–363.

    Google Scholar 

  • Vaughan, C, Ramirez, O., Herrera, G., Guries, R., 2007. Spatial ecology and conservation of two sloth species in a cacao landscape in Limón, Costa Rica. Biodivers. Conserv. 16, 2293–2310.

    Article  Google Scholar 

  • White, G., Burnham, K.P., 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–138.

    Article  Google Scholar 

  • Zollner, P.A., Lima, S.L., 2005. Behavioral tradeoffs when dispersing across a patchy landscape. Oikos 108, 219–230.

    Article  Google Scholar 

  • Zuur, A.G., Ieno, E.N., Walker, N.J., Savaliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, pp. 574.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Marques Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, P.M., Chiarello, A.G., Ribeiro, M.C. et al. Local and landscape influences on the habitat occupancy of the endangered maned sloth Bradypus torquatus within fragmented landscapes. Mamm Biol 81, 447–454 (2016). https://doi.org/10.1016/j.mambio.2016.06.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2016.06.003

Keywords

Navigation