Skip to main content

Advertisement

Log in

Radiation in Spine Deformity: State-of-the-Art Reviews

  • State of art Review
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design/Methods

Review article.

Objectives

This article will provide an overview regarding measurement of radiation exposure and effects on patients with spinal deformity.

Summary of Background Data/Results

Pediatric and adult spinal deformity patients are frequently exposed to diagnostic studies exposing them to ionizing radiation. There is a concern that medical radiation can result in increased cancer risk, particularly in children who will live for a long period of time in which cancer may develop and who have rapidly dividing cells that may be more susceptible to DNA damage. CT imaging imparts 10–100 times higher radiation dosing than standard radiographs. Usage of CT imaging studies is growing in the United States and represents 50% of medical imaging exposure. In addition to the 3 millisieverts (mSv) mean natural background exposure, in the United States, the average American experiences an additional 3 mSv of exposure primarily due to medical diagnostic imaging. Early-onset scoliosis patients are at risk of high cumulative radiation exposure given the young age at diagnosis and frequency of multiorgan system involvement in the case of neuromuscular, congenital, and syndromic patients. Biplanar slot scanning reduces patient radiation exposure, and overall levels of exposure from radiographic imaging is quite low compared with CT imaging or historic radiographs. Specialized pediatric CT dosing protocols result in lower patient absorbed dose. Surgeon and team intraoperative exposure to radiation should always be a concern. Appropriate shielding with a lead apron and minimizing radiation exposure are appropriate strategies.

Conclusions

This article will help guide surgeons to make appropriate decisions regarding the need for imaging studies and advocate for low-dose imaging protocols within their facilities.

Level of Evidence

V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hull NC, Binkovitz LA, Schueler BA, et al. Upright biplanar slot scanning in pediatric orthopedics: applications, advantages, and artifacts. AJR Am J Roentgenol 2015;205:W124–32.

    Article  PubMed  Google Scholar 

  2. Dietrich TJ, Pfirrmann CW, Schwab A, et al. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 2013;42:959–67.

    Article  PubMed  Google Scholar 

  3. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 2013;346:f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–96.

    Article  CAS  PubMed  Google Scholar 

  5. NCRP Report 160. Ionizing radiation exposure of the population of the United States. Bethesda, MD: National Council on Radiation Protection and Measurement; 2009.

    Google Scholar 

  6. Bauhs JA, Vrieze TJ, Primak AN, et al. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008;28: 245–53.

    Article  PubMed  Google Scholar 

  7. The 2007 Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection. Ann ICRP 2007;37:1–332.

    Google Scholar 

  8. NCRP Report 116. Limitation of exposure to ionizing radiation. Bethesda, MD: National Council on Radiation Protection and Measurements; 1993.

    Google Scholar 

  9. Preston DL, Cullings H, Suyama A, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 2008;100:428–36.

    Article  PubMed  Google Scholar 

  10. Ron E, Preston DL, Mabuchi K. More about cancer incidence in atomic bomb survivors: solid tumors, 1958–1987. Radiat Res 1995;141:126–7.

    Article  CAS  PubMed  Google Scholar 

  11. BEIR VII health risks from exposure to low levels of ionizing radiation, phase 2. Available at: http://www.nap.edu/openbook.php?isbn=030909156X. Accessed June 14, 2014.

  12. Otake M, Schull WJ, Neel JV. Congenital malformations, stillbirths, and early mortality among the children of atomic bomb survivors: a reanalysis. Radiat Res 1990;122:1–11.

    Article  CAS  PubMed  Google Scholar 

  13. Blot WJ, Sawada H. Fertility among female survivors of the atomic bombs of Hiroshima and Nagasaki. Am J Hum Genet 1972;24(6 pt 1):613–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li FP, Gimbrere K, Gelber RD, et al. Outcome of pregnancy in survivors of Wilms’ tumor. JAMA 1987;257:216–9.

    Article  CAS  PubMed  Google Scholar 

  15. Byrne J, Mulvihill JJ, Myers MH, et al. Effects of treatment on fertility in long-term survivors of childhood or adolescent cancer. N Engl J Med 1987;317:1315–21.

    Article  CAS  PubMed  Google Scholar 

  16. Hawkins MM. Is there evidence of a therapy-related increase in germ cell mutation among childhood cancer survivors? J Natl Cancer Inst 1991;83:1643–50.

    Article  CAS  PubMed  Google Scholar 

  17. Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013;167:700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ronckers CM, Land CE, Miller JS, et al. Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res 2010;174:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ronckers CM, Doody MM, Lonstein JE, et al. Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2008;17:605–13.

    Article  PubMed  Google Scholar 

  20. Doody MM, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 2000;25:2052–63.

    Article  CAS  Google Scholar 

  21. Goldberg MS, Mayo NE, Levy AR, et al. Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology 1998;9:271–8.

    Article  CAS  PubMed  Google Scholar 

  22. Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative radiation exposure with EOS imaging compared with standard spine radiographs. Spine Deform 2015;3:144–50.

    Article  PubMed  Google Scholar 

  23. Simony A, Hansen EJ, Christensen SB, et al. Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously. Eur Spine J 2016;25:3366–70.

    Article  PubMed  Google Scholar 

  24. Mettler Jr FA, Thomadsen BR, Bhargavan M, et al. Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 2008;95:502–7.

    Article  CAS  PubMed  Google Scholar 

  25. Deschenes S, Charron G, Beaudoin G, et al. Diagnostic imaging of spinal deformities: reducing patients’ radiation dose with a new slot-scanning x-ray imager. Spine 2010;35:989–94.

    Article  PubMed  Google Scholar 

  26. Health Physics Society. Radiation risk in perspective: position statement of the Health Physics Society. Herndon, VA: Health Physics Society; 1996 (rev. 2010).

    Google Scholar 

  27. Hendee WR. International Organization for Medical Physics. Policy statement of the International Organization for Medical Physics. Radiology 2013;267:326–7.

    Article  PubMed  Google Scholar 

  28. American Association of Physicists in Medicine. AAPM Position Statement on Radiation Risks from Medical Imaging Procedures. Policy date December 13, 2011, https://www.aapm.org/org/policies/details.asp?id=439&type=PP

  29. Levy AR, Goldberg MS, Mayo NE, et al. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine 1996;21:1540–7; discussion 1548.

    Article  CAS  PubMed  Google Scholar 

  30. Hui SC, Pialasse JP, Wong JY, et al. Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT-IRSSD “John Sevastic Award” Winner in Imaging Research. Scoliosis Spinal Disord 2016;11:46.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ilharreborde B, Dubousset J, Skalli W, Mazda K. Spinal penetration index assessment in adolescent idiopathic scoliosis using EOS low-dose biplanar stereoradiography. Eur Spine J 2013;22: 2438–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Simon AL, Ferrero E, Noelle Larson A, Kaufman KR. Stereoradiography imaging motion artifact: does it affect radiographic measures after spinal instrumentation? Eur Spine J 2018;27:1105–11.

    Article  PubMed  Google Scholar 

  33. Larson AN, Santos ER, Polly Jr DW, et al. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine 2012;37:E188–94.

    Article  PubMed  Google Scholar 

  34. Ughwanogho E, Patel NM, Baldwin KD, et al. Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine 2012;37:E473–8.

    Article  PubMed  Google Scholar 

  35. Su AW, McIntosh AL, Schueler BA, et al. How does patient radiation exposure compare with low-dose O-arm versus fluoroscopy for pedicle screw placement in idiopathic scoliosis? J Pediatr Orthop 2017;36:171–7.

    Article  Google Scholar 

  36. Sarwahi V, Payares M, Wendolowski S, et al. Low-dose radiation 3D intraoperative imaging: how low can we go? An O-arm, CT scan, cadaveric study. Spine (Phila Pa 1976) 2017;42:E1311–7.

    Article  Google Scholar 

  37. Abul-Kasim K, Soderberg M, Selariu E, et al. Optimization of radiation exposure and image quality of the cone-beam O-arm intraoperative imaging system in spinal surgery. J Spinal Disord Tech 2012;25:52–8.

    Article  PubMed  Google Scholar 

  38. Su AW, Luo TD, McIntosh AL, et al. Switching to a pediatric dose O-arm protocol in spine surgery significantly reduced patient radiation exposure. J Pediatr Orthop 2016;36:621–6.

    Article  PubMed  Google Scholar 

  39. Perisinakis K, Theocharopoulos N, Damilakis J, et al. Estimation of patient dose and associated radiogenic risks from fluoroscopically guided pedicle screw insertion. Spine 2004;29:1555–60.

    Article  PubMed  Google Scholar 

  40. Jones DP, Robertson PA, Lunt B, Jackson SA. Radiation exposure during fluoroscopically assisted pedicle screw insertion in the lumbar spine. Spine (Phila Pa 1976) 2000;25:1538–41.

    Article  CAS  Google Scholar 

  41. Nelson EM, Monazzam S, Kim KD, et al. Intra-operative fluoroscopy, portable X-ray and CT: patient and operating room personnel radiation exposure in spinal surgery. Spine J 2014;14:2985–91.

    Article  PubMed  Google Scholar 

  42. Rampersaud YR, Foley KT, Shen AC, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976) 2000;25:2637–45.

    Article  CAS  Google Scholar 

  43. Mroz TE, Abdullah KG, Steinmetz MP, et al. Radiation exposure to the surgeon during percutaneous pedicle screw placement. J Spinal Disord Tech 2011;24:264–7.

    Article  PubMed  Google Scholar 

  44. Ul Haque M, Shufflebarger HL, O’Brien M, Macagno A. Radiation exposure during pedicle screw placement in adolescent idiopathic scoliosis: is fluoroscopy safe? Spine (Phila Pa 1976) 2006;31: 2516–20.

    Article  Google Scholar 

  45. Theocharopoulos N, Perisinakis K, Damilakis J, et al. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am 2003;85-A:1698–703.

    Article  Google Scholar 

  46. Kim KP, Miller DL, Balter S, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 2008;94:211–27.

    Article  CAS  PubMed  Google Scholar 

  47. McArthur N, Conlan DP, Crawford JR. Radiation exposure during scoliosis surgery: a prospective study. Spine J 2015;15(3 suppl): S33–6.

    Article  PubMed  Google Scholar 

  48. Yoshihara H, Paulino CB. Radiation exposure to the surgeons and patients in fluoroscopic-guided segmental pedicle screw placement for pediatric scoliosis. Spine (Phila Pa 1976) 2018;43:E1398–402.

    Article  Google Scholar 

  49. Singer G Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg 2005;13:69–76.

    Article  PubMed  Google Scholar 

  50. Smith HE, Welsch MD, Sasso RC, Vaccaro AR. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 2008;31:532–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Valone LC, Chambers M, Lattanza L, James MA. Breast radiation exposure in female orthopaedic surgeons. J Bone Joint Surg Am 2016;98:1808–13.

    Article  PubMed  Google Scholar 

  52. Chou LB, Cox CA, Tung JJ, et al. Prevalence of cancer in female orthopaedic surgeons in the United States. J Bone Joint Surg Am 2010;92:240–4.

    Article  PubMed  Google Scholar 

  53. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol 2013;111:1368–72.

    Article  PubMed  Google Scholar 

  54. Ciraj-Bjelac O, Rehani MM, Sim KH, et al. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv 2010;76:826–34.

    Article  PubMed  Google Scholar 

  55. Bowman JR, Razi A, Watson SL, et al. What leads to lead: results of a nationwide survey exploring attitudes and practices of orthopaedic surgery residents regarding radiation safety. J Bone Joint Surg Am 2018;100:e16.

    Article  PubMed  Google Scholar 

  56. Cannon TA, Neto NA, Kelly DM, et al. Characterization of radiation exposure in early-onset scoliosis patients treated with the Vertical Expandable Prosthetic Titanium Rib (VEPTR). J Pediatr Orthop 2014;34:179–84.

    Article  PubMed  Google Scholar 

  57. Mundis Jr GM, Pawelek JB, et al. Longitudinal pilot analysis of radiation exposure during the course of growing rod treatment for early-onset scoliosis. Spine Deform 2016;4:55–8.

    Article  PubMed  Google Scholar 

  58. Margalit A, McKean G, Constantine A, et al. Body mass hides the curve: thoracic scoliometer readings vary by body mass index value. J Pediatr Orthop 2017;37:e255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Izatt MT, Bateman GR, Adam CJ. Evaluation of the iPhone with an acrylic sleeve versus the scoliometer for rib hump measurement in scoliosis. Scoliosis 2012;7:14.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huang SC. Cut-off point of the scoliometer in school scoliosis screening. Spine (Phila Pa 1976) 1997;22:1985–9.

    Article  CAS  Google Scholar 

  61. Garg S, Kipper E, LaGreca J, et al. Are routine postoperative radiographs necessary during the first year after posterior spinal fusion for idiopathic scoliosis? A retrospective cohort analysis of implant failure and surgery revision rates. J Pediatr Orthop 2015;35:33–8.

    Article  PubMed  Google Scholar 

  62. Garcia GH, Park MJ, Baldwin K, et al. Do routine radiographs within the first two years following pediatric posterior spinal fusion prompt revision surgery? Spine (Phila Pa 1976) 2013;38: 2216–20.

    Article  Google Scholar 

  63. Knott P, Sturm P, Lonner B, et al. Multicenter comparison of 3D spinal measurements using surface topography with those from conventional radiography. Spine Deform 2016;4:98–103.

    Article  PubMed  Google Scholar 

  64. Komeili A, Westover L, Parent EC, et al. Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents. Spine J 2015;15:743–51.

    Article  PubMed  Google Scholar 

  65. Beck NA, Miller R, Baldwin K, et al. Do oblique views add value in the diagnosis of spondylolysis in adolescents? J Bone Joint Surg Am 2013;95:e65.

    Article  PubMed  Google Scholar 

  66. Fadell MF, Gralla J, Bercha I, et al. CT outperforms radiographs at a comparable radiation dose in the assessment for spondylolysis. Pediatr Radiol 2015;45:1026–30.

    Article  PubMed  Google Scholar 

  67. Kobayashi A, Kobayashi T, Kato K, et al. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med 2013;41:169–76.

    Article  PubMed  Google Scholar 

  68. Rush JK, Astur N, Scott S, et al. Use of magnetic resonance imaging in the evaluation of spondylolysis. J Pediatr Orthop 2015;35: 271–5.

    PubMed  Google Scholar 

  69. Gum JL, Crawford 3rd CH, Collis PC, Carreon LY. Characteristics associated with active defects in juvenile spondylolysis. Am J Orthop (Belle Mead NJ) 2015;44:E379–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noelle Larson MD.

Additional information

Author disclosures: ANL (other from K2M, other from Orthopediatrics, outside the submitted work), BAS (none), JD (other from SAS Medtronic France, outside the submitted work).

Funding: No funding was used in support of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, A.N., Schueler, B.A. & Dubousset, J. Radiation in Spine Deformity: State-of-the-Art Reviews. Spine Deform 7, 386–394 (2019). https://doi.org/10.1016/j.jspd.2019.01.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2019.01.003

Keywords

Navigation