Skip to main content
Log in

A class of observation-driven random coefficient INAR(1) processes based on negative binomial thinning

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Integer-valued time series models and their applications have attracted a lot of attention over the last years. In this paper, we introduce a class of observation-driven random coefficient integer-valued autoregressive processes based on negative binomial thinning, where the autoregressive parameter depends on the observed values of the previous moment. Basic probability and statistics properties of the process are established. The unknown parameters are estimated by the conditional least squares and empirical likelihood methods. Specially, we consider three aspects of the empirical likelihood method: maximum empirical likelihood estimate, confidence region and EL test. The performance of the two estimation methods is compared through simulation studies. Finally, an application to a real data example is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis, 8, 261–275.

    Article  MathSciNet  Google Scholar 

  • Brillinger, D. R. (2001). Time series: data analysis and theory. Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Ding, X., & Wang, D. (2016). Empirical likelihood inference for INAR(1) model with explanatory variables. Journal of the Korean Statistical Society, 45, 623–632.

    Article  MathSciNet  Google Scholar 

  • Gomes, D., & Cantoe Castro, L. (2009). Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process. Journal of Statistical Planning and Inference, 139, 4088–4097.

    Article  MathSciNet  Google Scholar 

  • Hall, P., & Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.

    MATH  Google Scholar 

  • Joe, H. (1996). Time series models with univariate margins in the convolution-closed infinitely divisible class. Journal of Applied Probability, 33, 664–677.

    Article  MathSciNet  Google Scholar 

  • Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. The Annals Statistics, 5, 2084–2102.

    Article  MathSciNet  Google Scholar 

  • Klimko, L. A., & Nelson, P. I. (1978). On conditional least squares estimation for stochastic processes. The Annals of Statistics, 6, 629–642.

    Article  MathSciNet  Google Scholar 

  • Leonenko, N. N., Savani, V., & Zhigljavsky, A. A. (2007). Autoregressive negative binomial processes. Annales de l’I.S.U.P, 51, 25–47.

    MathSciNet  Google Scholar 

  • Li, H., Yang, K., Zhao, S., & Wang, D. (2017). First-order random coefficients integer-valued threshold autoregressive processes. Asta Advances in Statistics Analysis, 1, 1–27.

    Google Scholar 

  • Monteiro, M., Scotto, M. G., & Pereira, I. (2012). Integer-valued self-exciting threshold autoregressive processes. Communications in Statistics. Theory and Methods, 41, 2717–2737.

    Article  Google Scholar 

  • Mykland, P. A. (1995). Dual likelihood. The Annals of Statistics, 23, 396–421.

    Article  MathSciNet  Google Scholar 

  • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237–249.

    Article  MathSciNet  Google Scholar 

  • Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics, 22, 300–325.

    Article  MathSciNet  Google Scholar 

  • Ristić, M. M., Bakouch, H. S., & Nastić, A. S. (2009). A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. Journal of Statistical Planning and Inference, 139, 2218–2226.

    Article  MathSciNet  Google Scholar 

  • Ristić, M. M., Nastić, A. S., & Bakouch, H. S. (2012). Estimation in an integer-Valued autoregressive process with negative binomial marginals (NBINAR(1)). Communications in Statistics. Theory and Methods, 41, 606–618.

    Article  Google Scholar 

  • Scotto, M. G., Weiß, C. H., & Gouveia, S. (2015). Thinning-based models in the analysis of integer-valued time series: a review. Statistical Modelling, 15, 590–618.

    Article  MathSciNet  Google Scholar 

  • Steutel, F., & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals of Probability, 7, 893–899.

    Article  MathSciNet  Google Scholar 

  • Triebsch, L. K. (2008). New integer-valued autoregressive and regression models with state-dependent parameters (Doctoral dissertation), Munich: TU Kaiserslautern, Verlag Dr. Hut.

    Google Scholar 

  • Tweedie, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stochastic Processes and their Applications, 3, 385–403.

    Article  MathSciNet  Google Scholar 

  • Weiß, C. H. (2008). Thinning operations for modeling time series of counts: a survey. ASTA Advances in Statistical Analysis, 92, 319–343.

    Article  MathSciNet  Google Scholar 

  • Weiß, C. H., & Kim, H. Y. (2014). Diagnosing and modelling extra-binomial variation for time-dependent counts. Applied Stochastic Models in Business and Industry, 30, 588–608.

    Article  MathSciNet  Google Scholar 

  • Weiß, C. H., & Pollett, P. K. (2014). Binomial autoregressive processes with density dependent thinning. Journal of Time Series Analysis, 35, 115–132.

    Article  MathSciNet  Google Scholar 

  • Wu, R., & Cao, J. (2011). Blockwise empirical likelihood for time series of counts. Journal of Multivariate Analysis, 102, 661–673.

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Wang, D., & Zhu, F. (2011a). Empirical likelihood for first-order random coefficient integer-valued autoregressive processes. Communications in Statistics. Theory and Methods, 40, 492–509.

    Article  Google Scholar 

  • Zhang, H., Wang, D., & Zhu, F. (2011b). Empirical likelihood inference for random coefficient INAR(p) process. Journal of Time Series Analysis, 32, 195–223.

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Wang, D., & Zhu, F. (2012). Generalized RCINAR(1) process with signed thinning operator. Communications in Statistics. Theory and Methods, 41, 1750–1770.

    Article  Google Scholar 

  • Zheng, H., Basawa, I. V., & Datta, S. (2006). Inference for pth order random coefficient integer-valued autoregressive processes. Journal of Time Series Analysis, 27, 411–440.

    Article  MathSciNet  Google Scholar 

  • Zheng, H., Basawa, I. V., & Datta, S. (2007). First order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning & Inference, 137, 212–229.

    Article  MathSciNet  Google Scholar 

  • Zheng, H., Basawa, I. V., & Datta, S. (2008). First-order observation-driven integer-valued autoregressive processes. Statistics & Probability Letters, 78, 1–9.

    Article  MathSciNet  Google Scholar 

  • Zhu, F., & Wang, D. (2015). Empirical likelihood for linear and log-linear INGARCH models. Journal of the Korean Statistical Society, 44, 150–160.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, D. & Yang, K. A class of observation-driven random coefficient INAR(1) processes based on negative binomial thinning. J. Korean Stat. Soc. 48, 248–264 (2019). https://doi.org/10.1016/j.jkss.2018.11.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2018.11.004

AMS 2000 subject classifications

Keywords

Navigation