Skip to main content

Advertisement

Log in

Model averaging procedure for varying-coefficient partially linear models with missing responses

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted toexamine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Leelahanon, S., & Li, Q. (2005). Efficient estimation of a semiparametric partially linear varying coefficient model. The Annals of Statistics, 33, 258–283.

    Article  MathSciNet  Google Scholar 

  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60, 255–265.

    Article  MathSciNet  Google Scholar 

  • Bravo, F. (2013). Partially linear varying coefficient models with missing at random responses. Annals of the Institute of Statistical Mathematics, 65, 721–762.

    Article  MathSciNet  Google Scholar 

  • Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: an integral part of inference. Bioemtrics, 53, 603–618.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information theoretic approach (second ed.). New York: Springer.

    MATH  Google Scholar 

  • Cai, Z., Fan, J., & Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. Journal of the American Statistical Association, 95, 888–902.

    Article  MathSciNet  Google Scholar 

  • Claeskens, G., & Hjort, N. L. (2003). The focused information criterion (with discussion). Journal of the American Statistical Association, 98, 900–916.

    Article  MathSciNet  Google Scholar 

  • Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. New York: Cambridge University Press, (Chapter 6).

    MATH  Google Scholar 

  • Fan, J., & Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 11, 1031–1057.

    Article  MathSciNet  Google Scholar 

  • Fan, J., & Li, R. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association, 99, 710–723.

    Article  MathSciNet  Google Scholar 

  • Fan, J., & Zhang, J. (2000). Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society. Series B., 62, 303–322.

    Article  MathSciNet  Google Scholar 

  • Guo, D., Xue, L., & Hu, Y. (2017). Covariate-balancing-propensity-score-based inference for linear models with missing responses. Statistics & Probability Letters, 123, 139–145.

    Article  MathSciNet  Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054.

    Article  MathSciNet  Google Scholar 

  • Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75, 1175–1189.

    Article  MathSciNet  Google Scholar 

  • Hansen, B. E., & Racine, J. (2012). Jackknife model averaging. Journal of Econometrics, 167, 38–46.

    Article  MathSciNet  Google Scholar 

  • Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98, 879–899.

    Article  MathSciNet  Google Scholar 

  • Hjort, N. L., & Claeskens, G. (2006). Focussed information criteria and model averaging for Cox’s hazard regression model. Journal of the American Statistical Association, 101, 1449–1464.

    Article  MathSciNet  Google Scholar 

  • Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382–417.

    Article  MathSciNet  Google Scholar 

  • Huang, J. Z., Wu, C. O., & Zhou, L. (2002). Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika, 89, 111–128.

    Article  MathSciNet  Google Scholar 

  • Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society. Series B., 76, 243–263.

    Article  MathSciNet  Google Scholar 

  • Kang, J. D., & Schafer, J.L. (2007). Demystifying double robustness:A comparison of alternative strategies for estimating a population mean from incomplete data (with discussion). Statistical Science, 22, 523–539.

    Article  MathSciNet  Google Scholar 

  • Liang, H., Zou, G., Wan, A. T. K., & Zhang, X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 106, 1053–1066.

    Article  MathSciNet  Google Scholar 

  • Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675.

    MATH  Google Scholar 

  • Newey, W., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle, & D. L. McFadden (Eds.), Handbook of econometrics (pp. 2111–2245). Amsterdam: North-Holland.

    Google Scholar 

  • Peter, B., Gerda, C., & Holger, D. (2014). Focussed model selection in quantile regression. Statistica Sinica, 24, 601–624.

    MathSciNet  MATH  Google Scholar 

  • Raftery, A., Madigan, D., & Hoeting, J. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92, 179–191.

    Article  MathSciNet  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  Google Scholar 

  • Sun, Z., Su, Z., & Ma, J. (2014). Focused vector information criterion model selection and model averaging regression with missing response. Metrika, 77, 415–432.

    Article  MathSciNet  Google Scholar 

  • Wan, A. T. K., Zhang, X., & Wang, S. (2014). Frequentist model averaging for multinomial and ordered logit models. International Journal of Forecasting, 30, 118–128.

    Article  Google Scholar 

  • Wan, A. T. K., Zhang, X., & Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal of Econometrics, 122, 277–283.

    Article  MathSciNet  Google Scholar 

  • Wang, Q., Lindon, O. B., & Härdle, W. (2004). Semiparametric regression analysis with missing response at random. Journal of the American Statistical Association, 99, 334–345.

    Article  MathSciNet  Google Scholar 

  • Wang, Q., & Sun, Z. (2007). Estimation in partially linear models with missing responses at random. Journal of Multivariate Analysis, 98, 1470–1493.

    Article  MathSciNet  Google Scholar 

  • Wang, H., Zou, G., & Wan, A. T. K. (2012). Model averaging for varying-coefficient partially linear measurement error models. Electronic Journal of Statistics, 2012, 1017–1039.

    Article  MathSciNet  Google Scholar 

  • Xia, Y., Zhang, W., & Tong, H. (2004). Efficient estimation for semivarying-coefficient models. Biometrika, 91, 661–681.

    Article  MathSciNet  Google Scholar 

  • Xue, L., & Zhu, L. (2007). Empirical likelihood for a varying coefficient model with longitudinal data. Journal of the American Statistical Association, 102, 642–654.

    Article  MathSciNet  Google Scholar 

  • You, J., & Chen, G. (2006). Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. Journal of Multivariate Analysis, 97, 324–341.

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Lee, S. Y., & Song, X. (2002). Local polynomial fitting in semiparametric coefficient model. Journal of Multivariate Analysis, 82, 166–188.

    Article  MathSciNet  Google Scholar 

  • Zhang, X., & Liang, H. (2011). Focused information criterion and model averaging for generalized additive partial linear models. The Annals of Statistics, 39, 174–200.

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Wan, A. T. K., & Zhou, S. (2012). Focused information criteria, model selection, and model averaging in a Tobit Model with a nonzero threshold. Journal of Business & Economic Statistics, 30, 132–142.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Cheng, W., Hu, G. et al. Model averaging procedure for varying-coefficient partially linear models with missing responses. J. Korean Stat. Soc. 47, 379–394 (2018). https://doi.org/10.1016/j.jkss.2018.04.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2018.04.004

AMS 2000 subject classifications

Keywords

Navigation