Skip to main content
Log in

Modeling discrete stock price changes using a mixture of Poisson distributions

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We study discrete price changes due to the size of a trade in the market microstructure model. We use a mixture of Poisson distributions to model the discrete changes in stock price. The parameters are estimated using the Expectation-Maximization (EM) algorithm with mixing probabilities which depend on order size. Consistency and asymptotic normality of a sequence of estimators are proved, and asymptotic confidence intervals for functions of the parameters are derived. We test the method with simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bank, P., & Baum, D. (2004). Hedging and portfolio optimization in financial markets with a large trader. Mathematical Finance, 14(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics and Data Analysis, 56(12), 4122–4137.

    Article  MathSciNet  MATH  Google Scholar 

  • Biais, B., & Weill, P.-O. (2009). Liquidity shocks and order book dynamics. In NBER working paper series (p. w15009). National Bureau of Economic Research.

    Google Scholar 

  • Blekas, K., Likas, A., Galatsanos, N. P., & Lagaris, I. E. (2005). A spatially constrained mixture model for image segmentation. IEEE Transactions on Neural Networks, 16(2), 494–498.

    Article  Google Scholar 

  • Brijs, T., Karlis, D., Swinnen, G., Vanhoof, K., Wets, G., & Manchanda, P. (2004). A multivariate Poisson mixture model for marketing applications. Statistica Neerlandica, 58(3), 322–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Caudill, S. B., Gropper, D. M., & Hartarska, V. (2009). Which microfinance institutions are becoming more cost effective with time? evidence from a mixture model. Journal of Money, Credit and Banking, 41(4), 651–672.

    Article  Google Scholar 

  • Çetin, U., Jarrow, R. A., & Protter, P. (2004). Liquidity risk and arbitrage pricing theory. Finance and Stochastics, 8(3), 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Çetin, U., & Rogers, L. C. G. (2007). Modeling liquidity effects in discrete time. Mathematical Finance, 17(1), 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Cont, R., Stoikov, S., & Talreja, R. (2010). A stochastic model for order book dynamics. Operations Research, 58(3), 549–563.

    Article  MathSciNet  MATH  Google Scholar 

  • Czado, C., Erhardt, V., Min, A., & Wagner, S. (2007). Zero-inflated generalized Poisson models with regression effects on the mean, dispersion and zeroinflation level applied to patent outsourcing rates. Statistical Modelling, 7, 125–153.

    Article  MathSciNet  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(8), 1–3.

    MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L., & Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. The Annals of Statistics, 13, 342–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, W., Liu, Y., Wu, J., Nephew, K. P., Huang, T. H., & Li, L. (2008). A Poisson mixture model to identify changes in RNA polymerase II binding quantity using high-throughput sequencing technology. BMC Genomics, 9(Suppl 2), S23.

    Article  Google Scholar 

  • Gerdtham, G., & Trivedi, P. K. (2001). Equity in Swedish health care reconsidered: new results based on the finite mixture model. Health Economics, 10, 565–572.

    Article  Google Scholar 

  • Gill, R., Lee, K., & Song, S. (2007). Computation of estimates in segmented regression and a liquidity effect model. Computational Statistics and Data Analysis, 51(12), 6459–6475.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd Ed.). Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Greenspan, H., Goldberger, J., & Eshet, I. (2001). Mixture model for face-color modeling and segmentation. Pattern Recognition Letters, 22(14), 1525–1536.

    Article  MATH  Google Scholar 

  • Harris, L. (1991). Stock price clustering and discreteness. The Review of Financial Studies, 4, 389–415.

    Article  Google Scholar 

  • Hernandez, J. A., & Phillips, I. W. (2006). Weibull mixture model to characterise end-to-end internet delay at coarse time-scales. IEE Proceedings. Communications, 153(2).

    Google Scholar 

  • Madsen, H., & Thyregod, P. (2011). Introduction to general and generalized linear models. Boca Raton: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley Series.

    Book  MATH  Google Scholar 

  • Park, B. J., & Lord, D. (2009). Application of finite mixture models for vehicle crash data analysis. Accident Analysis & Prevention, 41(4), 683–691.

    Article  Google Scholar 

  • Petrov, V. V. (2001). Limit theorems of probability theory: Sequences of independent random variables. Oxford: Clarendon Press.

    Google Scholar 

  • Rocha, M., Soldevilla, M., & Burtenshaw, B. (2007). Gaussian mixture model classification of odontocetes in the Southern California Bight and the Gulf of California. Acoustical Society of America, 121(3).

    Google Scholar 

  • Rosu, I. (2009). A dynamic model of the limit order book. Review of the Financial Studies, 22(11), 4601–4641.

    Article  Google Scholar 

  • Su, K., Chen, J., Lee, J., Hu, C., Chang, C., Chou, Y., et al. (2011). Image segmentation and activity estimation for micropet 11c raclopride images using an expectation-maximisation algorithm with a Poisson distribution. Computerized Medical Imaging and Graphics, 35, 417–426.

    Article  Google Scholar 

  • Xu, L., & Jordan, M. (1996). On convergence properties of the EM aagorithm for Gaussian mixtures. Neural Computation, 8, 129–151.

    Article  Google Scholar 

  • Yao, W. (2013). A note on EM algorithm for mixture models. Statistics & Probability Letters, 83(2), 519–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, Y. (2003). A partially observed model for micromovement of asset prices with Bayes estimation via filtering. Mathematical Finance, 13(3), 411–444.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai, C., Velivelli, A., & Yu, B. (2004). A cross collection mixture model for comparative text mining. In Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp 743–748).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasitha R. Jayasekare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasekare, R.R., Gill, R. & Lee, K. Modeling discrete stock price changes using a mixture of Poisson distributions. J. Korean Stat. Soc. 45, 409–421 (2016). https://doi.org/10.1016/j.jkss.2016.01.002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2016.01.002

AMS 2000 subject classifications

Keywords

Navigation