Skip to main content
Log in

Stochastic elasticity of variance with stochastic interest rates

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper aims to improve the implied volatility fitting capacity of underlying asset price modelsbyrelaxing constant interest rate and constant elasticityof variance and embedding a scaled stochastic setting for option prices. Using multi-scale asymptotics based on averaging principle, we obtain an analytic solution formula of the approximate price for a European vanilla option. The combined structure of stochastic elasticity of variance and stochastic interest rates is compared to the structure of stochastic volatility and stochastic interest rates. The result shows that of the two, the former ismore appropriate to fit market data than the latter in terms of convexity of implied volatility surface as time-to-maturity becomes shorter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, K. I., & Jarrow, R. A. (1992). Pricing options on risky assets in a stochastic interest rate economy. Mathematical Finance, 4, 217–237.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.

    Article  MathSciNet  Google Scholar 

  • Clewlow, L., & Strickland, C. (2000). Implementing derivative models. New York: John Wiley and Sons.

    Google Scholar 

  • Cox, J. (1975). Notes on option pricing I: Constant elasticity of variance diffusions. Working paper. Stanford University (Reprinted in J. Portf. manage., 1996, 22, 15–17).

    Google Scholar 

  • Cox, J., & Ross, S. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3, 145–166.

    Article  Google Scholar 

  • Fang, H. (2012). European option pricing formula under stochastic interest rate. Progress in Applied Mathematics, 4(1), 14–21.

    Google Scholar 

  • Fouque, J.-P., Lorig, M., & Sircar, R. (2013). Second order multiscale stochastic volatility asymptotics: stochastic Terminal layer analysis & calibration, submitted for publication.

    MATH  Google Scholar 

  • Fouque, J.-P., Papanicolaou, G., Sircar, R., & Solna, K. (2011). Multiscale stochastic volatility for equity, interest rate, and credit derivatives. Cambridge University Press.

    Book  Google Scholar 

  • Hagan, P.S., Kumar, D., Lesniewski, A.S., & Woodward, D.E.(2002). Managing smile risk. Wilmott Magazine, 84–108. http://www.wilmott.com/pdfs/021118_smile.pdf.

    Google Scholar 

  • Howison, S. (2005). Matched asymptotic expansions in financial engineering. Journal of Engineering Mathematics, 53, 385–406.

    Article  MathSciNet  Google Scholar 

  • Hull, J., & White, A. (1996). Using Hull-White interest rate trees. Journal of Derivatives, 4, 26–36.

    Article  Google Scholar 

  • John, F. (1982). Partial differential equations (4th ed.). New York: Springer-Verlag.

    Book  Google Scholar 

  • Karatzas, I., & Shreve, S. (1991). Brownian motion and stochastic calculus. New York: Springer.

    MATH  Google Scholar 

  • Kim, J.-H., Lee, J., Zhu, S.-P., & Yu, S.-H. (2014). A multiscale correction to the Black-Scholes formula. Applied Stochastic Models in Business and Industry, 30, 753–765.

    Article  MathSciNet  Google Scholar 

  • Kim, J.-H., Yoon, J.-H., & Yu, S.-H. (2014). Multiscale stochastic volatility with the Hull-White rate of interest. Journal of Futures Markets, 34(9), 819–837.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.

    Article  MathSciNet  Google Scholar 

  • Oksendal, B. (2003). Stochastic differential equations. New York: Springer.

    Book  Google Scholar 

  • Pelsser, A. (2000). Efficient methods for valuing interest rate derivatives. London: Springer.

    Book  Google Scholar 

  • Ramm, A. G. (2001). A simple proof of the Fredholm alternative and a characterization of the Fredholm operators. Mathematical Association of America, 108, 855–860.

    MathSciNet  MATH  Google Scholar 

  • Rindell, K. (1995). Pricing of index options when interest rates are stochastic: an empirical test. Journal of Banking & Finance, 19, 785–802.

    Article  Google Scholar 

  • Sattayatham, P., & Pinkham, S. (2013). Option pricing for a stochastic volatility Lévy model with stochastic interest rates. Journal of the Korean Statistical Society, 42, 25–36.

    Article  MathSciNet  Google Scholar 

  • Yang, S.-J., Lee, M.-K., & Kim, J.-H. (2014). Portfolio optimization under the stochastic elasticity of variance. Stochastics and Dynamics, 14(3), 1350024.19 pages.

    Google Scholar 

  • Yoon, J.-H., & Kim, J.-H. (2013). A closed-form analytic correction to the Black-Scholes-Merton price for perpetual American options. Applied Mathematics Letters, 26(12), 1146–1150.

    Article  MathSciNet  Google Scholar 

  • Yoon, J.-H., Kim, J.-H., & Choi, S.-Y. (2013). Multiscale analysis of a perpetual American option with the stochastic elasticity of variance. Applied Mathematics Letters, 26(7), 670–675.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JH., Lee, J. & Kim, JH. Stochastic elasticity of variance with stochastic interest rates. J. Korean Stat. Soc. 44, 555–564 (2015). https://doi.org/10.1016/j.jkss.2015.03.002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2015.03.002

AMS 2000 subject classifications

Keywords

Navigation