Skip to main content
Log in

Analysis of meso-inhomogeneous deformation on a metal material surface under low-cycle fatigue

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A polycrystalline Voronoi aggregation with a free surface is applied as the representative volume element (RVE) of the nickel-based GH4169 superalloy. Considering the plastic deformation mechanism at the grain level and the Bauschinger effect, a crystal plasticity model reflecting the nonlinear kinematic hardening of crystal slipping system is applied. The microscopic inhomogeneous deformation during cyclic loading is calculated through numerical simulation of crystal plasticity. The deformation inhomogeneity on the free surface of the RVE under cyclic loading is described respectively by using the following parameters: standard deviation of the longitudinal strain in macro tensile direction, statistical average of first principal strains, and standard deviation of longitudinal displacement. The relationship between the fatigue cycle number and the evolution of inhomogeneous deformation of the material’s free surface is investigated. This research finds that: (1) The inhomogeneous deformation of the material free surface is significantly higher than that of the RVE inside; (2) the increases of the characterization parameters of inhomogeneous deformation on the free surface with cycles reflect the local maximum deformation of the RVE growing during cyclic loading; (3) these parameters can be used as criteria to assess and predict the low-cycle fatigue life rationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Subra, Fatigue of Materials, 2nd Edition, Cambridge University Press, 1998.

  2. E. Santecchia, Hamouda, A.M.S. Musharavati, F. Zalnezhad, E. Cabibbo, M. El Mehtedi, S. Spigarelli, A review on fatigue life prediction methods for metals, Adv Mater Sci Eng (2016) Article ID 9573524.

  3. J.L. Chaboche, P. Kanouté, F. Azzouz, Cyclic inelastic constitutive equations and their impact on the fatigue life predictions, Int. J. Plast. 35 (2) (2012) 44–66.

    Google Scholar 

  4. S.C. Roy, S. Goyal, R. Sandhya, S.K. Ray, Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response, Nucl. Eng. Des. 253 (12) (2012) 219–225.

    Article  Google Scholar 

  5. A. Ince, G. Glinka, A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings, Int. J. Fatigue 62 (2) (2014) 34–41.

    Article  Google Scholar 

  6. F. Shen, W.P. Hu, Q.C. Meng, M. Zhang, A new damage mechanics based approach to fatigue life prediction and its engineering application, Acta Mech. Solida Sin. 28 (5) (2015) 510–520.

    Article  Google Scholar 

  7. R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal fatigue in engineering, Eng. Comput. 27 (2) (2000) 280–294.

    Google Scholar 

  8. J.D. Morrow, Cyclic plastic strain energy and fatigue of metals, in: Internal Friction, Damping, and Cyclic Plasticity, West Conshohocken, ASTM, PA, 1965, pp. 45–86.

    Book  Google Scholar 

  9. O.H. Basquin, The exponential law of endurance tests, Am. Soc. Test. Mater. Proc. 10 (1910) 625–630.

    Google Scholar 

  10. S.S. Manson, Behavior of materials under conditions of thermal stress, in: Proceedings of Heat Transfer Symposium, MI, University of Michigan Engineering Research Institute, 1953, pp. 9–75.

  11. L.F. Coffin Jr., A study of the effect of cyclic thermal stresses on a ductile metal, Trans. ASME 76 (1954) 931–950.

    Google Scholar 

  12. D. Radaj, Review of fatigue strength assessment of nonwelded and welded structures based on local parameters, Int. J. Fatigue 18 (3) (1996) 153–170.

    Article  Google Scholar 

  13. J. Man, T. Vystavěl, A. Weidner, I. Kuběna., M. Petrenec, T. Kruml, J. Polák, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int. J. Fatigue 39 (39) (2012) 44–53.

    Article  Google Scholar 

  14. J. Polák, J. Man, Mechanisms of extrusion and intrusion formation in fatigued crystalline materials, Mater. Sci. Eng. A 596 (596) (2014) 15–24.

    Article  Google Scholar 

  15. X.D. Li, H.M. Xie, Y.L. Kang, X.P. Wu, A brief review and prospect of experimental solid mechanics in China, Acta Mech. Solida Sin. 23 (6) (2010) 498–548.

    Article  Google Scholar 

  16. K.S. Zhang, Y.K. Shi, J.W. Ju, Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal, Mech. Mater. 64 (7) (2013) 76–90.

    Article  Google Scholar 

  17. K.S. Zhang, J.W. Ju, Z. Li, Y.L. Bai, W. Brocks, Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity, Mech. Mater. 85 (2015) 16–37.

    Article  Google Scholar 

  18. D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, The effect of machined topography and integrity on fatigue life, Int. J. Mach. Tools Manuf. 44 (2–3) (2004) 125–134.

    Article  Google Scholar 

  19. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc R. Soc Lond. A 348 (1976) 101–127.

    Article  Google Scholar 

  20. J.L. Chaboche, Constitutive equations for cyclic plasticity and viscoplasticity, Int. J. Plast. 5 (3) (1989) 247–302.

    Article  Google Scholar 

  21. L. Feng, G. Zhang, K.S. Zhang, Discussion of cyclic plasticity and viscoplasticity of single crystal nickel-based superalloy in large strain analysis: comparison of anisotropic macroscopic model and crystallographic model, Int. J. Mech. Sci. 46 (8) (2004) 1157–1171.

    Article  Google Scholar 

  22. K.S. Zhang, Y.K. Shi, L.B. Xu, Anisotropy of yielding/hardening and micro inhomogeneity of deforming/rotating for a polycrystalline metal under cyclic tension–compression, Acta Metall. Sin. 47 (10) (2011) 1292–1300 (in Chinese).

    Google Scholar 

  23. J. Pan, J.R. Rice, Rate sensitivity of plastic flow and implications for yield-surface vertices, Int. J. Solids Struct. 19 (11) (1983) 973–987.

    Article  Google Scholar 

  24. J.W. Hutchinson, Elastic-plastic behaviour of polycrystalline metals and composites, Proc R. Soc Lond. A 1976 (319) (1970) 247–272.

    Article  Google Scholar 

  25. Y.W. Chang, R.J. Asaro, An experimental study of shear localization in aluminum-copper single crystals, Acta Metall. 29 (1) (1981) 241–257.

    Article  Google Scholar 

  26. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystal at arbitrary strain, J. Mech. Phys. Solids 20 (6) (1972) 401–413.

    Article  Google Scholar 

  27. R.J. Asaro, J.R. Rice, Strain localization in ductile single crystals, J. Mech. Phys. Solids 25 (5) (1977) 309–338.

    Article  Google Scholar 

  28. D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31 (12) (1983) 1951–1976.

    Article  Google Scholar 

  29. A. Needleman, R.J. Asaro, J. Lemonds, D. Peirce, Finite element analysis of crystalline solids, Comput. Methods Appl. Mech. Eng. 52 (1–3) (1985) 689–708.

    Article  Google Scholar 

  30. K.S. Zhang, Microscopic heterogeneity and macroscopic mechanical behavior of a polycrystalline material, Acta Mech. Sin. 36 (6) (2004) 714–723 (In Chinese).

    Google Scholar 

  31. K.S. Zhang, M.S. W, R. Feng, Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling, Int. J. Plast. 21 (4) (2005) 801–834.

    Article  Google Scholar 

  32. H.Y. Li, Y.H. Kong, G.S. Chen, L.X. Xie, S.G. Zhu, X. Sheng, Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy, Mater. Sci. Eng. A 582 (11) (2013) 368–373.

    Article  Google Scholar 

  33. X.R. Wu, S.J. Yang, X.P. Han, S.L. Liu, Q.S. Liu, K.R. Lu, et al., Data manual for materials of aero-engine, Aircraft Engine Design Data Manual For Materials, Aviation Industry Press, China, 2008 (In Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Shi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GL., Zhang, KS., Zhong, XC. et al. Analysis of meso-inhomogeneous deformation on a metal material surface under low-cycle fatigue. Acta Mech. Solida Sin. 30, 557–572 (2017). https://doi.org/10.1016/j.camss.2017.11.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.11.002

Keywords

Navigation