Skip to main content
Log in

Elastic properties of self-compacting concrete modified with nanoparticles: Multiscale approach

  • Orginal Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Advances in cementitious composites and nanotechnologies have led to the development of self-compacting concrete (SCC) modified with nanoparticles. SCC with Al2O3 nanoparticles was used in this study. In addition, a reference sample of SCC without an addition of nanoparticles was investigated. First, the micro-mechanical properties of each phase of the composites were examined using the statistical nanoindentation techniques and deconvolution. Then, the interfacial transition zone (ITZ) was investigated using line indentation and X-ray microCT. The results indicated that the ITZ played no significant role in the composites. Subsequently, modified Mori—Tanaka and self-consistent homogenization schemes, accounting for random variability of constituent properties, were applied to evaluate the overall elastic properties of the composites. Then, macroscale laboratory (uniaxial compression) tests were carried out to verify the adopted approach. The results of the micro- and macroscale tests showed that the proposed laboratory investigation procedure and homogenization approach were proper. Finally, the modified Mori—Tanaka scheme was used to verify the influence of material composition on the effective elastic modulus of SCC with Al2O3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Okamura, K. Ozawa, M. Ouchi, Self-compacting concrete, Struct. Concr. 1 (2000) 3–17.

    Article  Google Scholar 

  2. H. Li, H.G. Xiao, J.P. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res. 34 (2004) 435–438.

    Article  Google Scholar 

  3. A. Nazari, S. Riahi, S.F. Riahi, A. Shamekhi, Khademno, Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete, J. Am. Sci. 6 (2010) 6–9.

    Google Scholar 

  4. E. Mohseni, B.M. Miyandehi, J. Yang, M.A. Yazdi, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash, Constr. Build. Mater. 84 (2015) 331–340.

    Article  Google Scholar 

  5. J.J. Gaitero, I. Campillo, P. Mondal, S.P. Shah, Small changes can make a great difference, Transport. Res. Rec: J. Transport. Res. Board 2141 (2010) 1–5.

    Article  Google Scholar 

  6. T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res. 35 (2005) 1943–1947.

    Article  Google Scholar 

  7. K.L. Scrivener, A.K. Crumbie, P. Laugesen, The interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interface Sci. 12 (2004) 411–421.

    Article  Google Scholar 

  8. W. Pichor, The interfacial transition zone between filler and matrix in cement based composites with cenospheres, Composites 6 (2006) 71–77.

    Google Scholar 

  9. R. Zimbelmann, A contribution to the problem of cement-aggregate bond, Cem. Concr. Res. 15 (1985) 801–808.

    Article  Google Scholar 

  10. J. Huang, Microstructural Study of the Interfacial Transition Zone in Concrete using Backscatter-Mode Scanning Electron Microscopy with Image Analysis, PhD thesis, University of Purdue, Purdue, 1998.

  11. Y. Gao, G. de Schutter, G. Ye, Z. Tan, K. Wu, The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content, Compos. Part B: Eng. 60 (2014) 1–13.

    Article  Google Scholar 

  12. G. Sherzer, P. Gao, E. Schlangen, G. Ye, E. Gal, Upscaling cement paste microstructure to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters, Materials 10 (2017) 242.

    Article  Google Scholar 

  13. V.P. Nguyen, M. Stroeven, L.J. Sluys, Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments, J. Multiscale Modell. 3 (2011) 229–270.

    Article  MathSciNet  Google Scholar 

  14. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A 65 (1952) 349–354.

    Article  Google Scholar 

  15. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids 11 (1963) 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 241 (1957) 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metal. 21 (1973) 571–574.

    Article  Google Scholar 

  18. R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids 13 (1965) 213–222.

    Article  Google Scholar 

  19. A. Qsymah, R. Sharma, Z. Yang, L. Margetts, P. Mummery, Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete, Constr. Build. Mater. 130 (2017) 230–240.

    Article  Google Scholar 

  20. F.P. Zhou, F.D. Lydon, B.I.G. Barr, Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete, Cem. Concr. Res. 25 (1995) 177–186.

    Article  Google Scholar 

  21. G. Constantinides, F.J. Ulm, The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling, Cem. Concr. Res. 34 (2004) 67–80.

    Article  Google Scholar 

  22. D. Breysse, Presentation of common non destructive techniques, in: D. Breysse (Ed.), Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, Springer Science + Business Media, Dordrecht, 2012 17–117.

    Chapter  Google Scholar 

  23. M. Musial, J. Grosel, Determining the Young’s modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams, Constr. Build. Mater. 121 (2016) 44–52.

    Article  Google Scholar 

  24. P. Niewiadomski, A. Ćwirzen, J. Hola, The influence of an additive in the form of selected nanoparticles on the physical and mechanical characteristics of self-compacting concrete, Proc. Eng. 111 (2015) 601–606.

    Article  Google Scholar 

  25. G.M. Pharr, W.C. Oliver, Nanoindentation of silver-relations between hardness and dislocation structure, J. Mater. Res. 4 (1989) 94–101.

    Article  Google Scholar 

  26. B. Bhushan, V.S. Williams, R.V. Shack, In-situ nanoindentation hardness apparatus for mechanical characterization of extremely thin films, J. Tribol. 110 (1988) 563–571.

    Article  Google Scholar 

  27. M. Luković, E. Schlangen, G. Ye, Combined experimental and numerical study of fracture behaviour of cement paste at the microlevel, Cem. Concr. Res. 73 (2015) 123–135.

    Article  Google Scholar 

  28. M. Rajczakowska, D. Lydzba, Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests, Stud. Geotech. Mech. 38 (2016) 65–74.

    Article  Google Scholar 

  29. K.J. Krakowiak, Assessment of the Mechanical Microstructure of Masonry Clay Brick by Nanoindentation, PhD thesis, University of Minho, Minho, 2011.

  30. I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57.

    Article  MathSciNet  MATH  Google Scholar 

  31. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.

    Article  Google Scholar 

  32. F.J. Ulm, M. Vandamme, C. Bobko, J.A. Ortega, K. Tai, C. Ortiz, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, J. Am. Ceram. Soc. 90 (2007) 2677–2692.

    Article  Google Scholar 

  33. K. Wu, H. Shi, L. Xu, G. Ye, G. de Schutter, Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties, Cem. Concr. Res. 79 (2016) 243–256.

    Article  Google Scholar 

  34. C. Bywalski, M. Rajczakowska, L. Sadowski, Barrage lock concrete porosity evaluation using X-ray microtomography, Key Eng. Mater. 662 (2015) 161–164.

    Article  Google Scholar 

  35. B.P. Flannery, H.W. Deckman, W.G. Roberge, K.L. D’Amico, Three-dimensional X-ray microtomography, Sci. 237 (1987) 1439–1445.

    Article  Google Scholar 

  36. L.A. Feldkamp, L.C. Davis, J.W. Kress, Practical cone-beam algorithm, J. Opt. Soc. Am. A 1 (1984) 612–619.

    Article  Google Scholar 

  37. CEN EN 12390, Testing Hardened Concrete - Part 13: Determination of Secant Modulus of Elasticity in Compression, European Committee for Standardization, Brussels, 2014.

    Google Scholar 

  38. L. Sorelli, G. Constantinides, F.J. Ulm, F. Toutlemonde, The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques, Cem. Concr. Res. 38 (2008) 1447–1456.

    Article  Google Scholar 

  39. D. Damidot, K. Velez, F. Sorrentino, Characterization of interstitial transition zone (ITZ) of high performance cement by nanoindentation technique, in: G. Grieve, G. Owens (Eds.), Proceeding of the 11th International Congress on the Chemistry of Cement: Cement’s Contribution to Development in the 21st Century, Cement Concrete Institute of South Africa, Durban, 2003 314–323.

    Google Scholar 

  40. M. Miller, C. Bobko, M. Vandamme, F.J. Ulm, Surface roughness criteria for cement paste nanoindentation, Cem. Concr. Res. 38 (2008) 467–476.

    Article  Google Scholar 

  41. M. Kursa, K. Kowalczyk-Gajewska, M.J. Lewandowski, H. Petryk, Elastic-plastic properties of metal matrix composites: Validation of mean-field approaches, Eur. J. Mech. A: Solids 68 (2018) 53–66.

    Article  Google Scholar 

  42. D. Lydzba, Effective Properties of Composites: Introduction to Micromechanics, Wroclaw University of Technology, PRINTPAP, Wroclaw, 2011.

    Google Scholar 

  43. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, 16th ed., Springer Science + Business Media, New York, 2013.

    MATH  Google Scholar 

  44. D. Lydzba, A. Rózanski, M. Rajczakowska, D. Stefaniuk, Random checkerboard based homogenization for estimating effective thermal conductivity of fully saturated soils, J. Rock Mech. Geotech. Eng. 9 (2017) 18–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Stefaniuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefaniuk, D., Niewiadomski, P., Musial, M. et al. Elastic properties of self-compacting concrete modified with nanoparticles: Multiscale approach. Archiv.Civ.Mech.Eng 19, 1150–1162 (2019). https://doi.org/10.1016/j.acme.2019.06.006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2019.06.006

Keywords

Navigation