Skip to main content

Advertisement

Log in

On wire spark erosion machining induced surface integrity of Ni55.8Ti shape memory alloys

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Ni55.8Ti shape memory alloys (SMAs) find applications in different fields of medical and engineering. In every field, surface integrity greatly affects the functional performance of shape memory alloy parts. In the present work, wire spark erosion machining of Ni55.8Ti shape memory alloys has been conducted and surface integrity parameters of the machined specimens have been evaluated. Experiments are designed using Taguchi L16 robust design of experiment technique. Effect of important process parameters, i.e. voltage, pulse-on time and pulse-off time on maximum surface roughness has been studied. Deterioration in surface integrity at various combinations of pulse-on and pulse-of time which produced high discharge energy has been observed. Scanned electron microscopic investigation, energy dispersive spectroscopy and XRD analyses, roughness measurement, and micro-hardness testing results are presented, analyzed and discussed. Optimization of process parameters resulted in surface integrity enhancement with low roughness (Rt - 7.78 μm and Ra - 1.45 μm) and very thin recast layer (4–6 μm) along with minimum subsurface defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Grzesik, Advanced Machining Processes of Metallic Materials, Elsevier, Netherland, 2016.

    Google Scholar 

  2. J.P. Davim, Machining of Hard Materials, Springer, UK, 2011.

    Book  Google Scholar 

  3. N. Sharma, K.K. Jangra, T. Raj, Fabrications of NiTi alloy: a review, Proc. Inst. Mech. Eng. J. Mater. Des. Appl. 232 (3) (2018) 250–269.

    Google Scholar 

  4. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des. 56 (4) (2014) 1078–1113.

    Article  Google Scholar 

  5. K. Mehta, K. Gupta, Fabrication and Processing of Shape Memory Alloys, Springer, Switzerland, 2018.

    Google Scholar 

  6. L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys, J. Metall. (2011) 15, https://doi.org/10.1155/2011/501483.

  7. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review, Prog. Mater. Sci. 57 (2012) 911–946.

    Article  Google Scholar 

  8. C. Velmurugan, V. Senthilkumar, S. Dinesh, D. Arulkirubakaran, Machining of NiTi shape memory alloys a review, Mach. Sci. Technol. 22 (3) (2018) 355–401.

    Article  Google Scholar 

  9. V. D’Anto, R. Rongo, G. Ametrano, G. Spagnuolo, P. Manzo, R. Martina, S. Paduano, R. Valletta, Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy, Angle Orthodont. 82 (5) (2012), https://doi.org/10.2319/100211-620.1.

    Google Scholar 

  10. Y. Guo, A. Klink, C. Fu, J. Snyder, Machinability and surface integrity of Nitinol shape memory alloy, CIRP Ann. 62 (1) (2013) 83–86.

    Article  Google Scholar 

  11. Y. Sun, Y. Gong, Y. Liu, Q. Li, Y. Zhou, Experimental study on surface characteristics and improvement of microelectrode machined by low speed wire electrical discharge turning, Arch. Civil Mech. Eng. 17 (4) (2017) 964–977.

    Article  Google Scholar 

  12. J.A. McGeough, Advanced Methods of Machining, Chapman and Hall, London, UK, 1988.

    Google Scholar 

  13. K. Mouralova, R. Matousek, J. Kovar, J. Mach, L. Klakurkova, J. Bednar, Analyzing the surface layer after WEDM depending on the parameters of a machine for the 16MnCr5 steel, Measurement 94 (1) (2016) 771–779.

    Article  Google Scholar 

  14. K. Mouralova, L. Klakurkova, R. Matousek, T. Prokes, R. Hrdy, V. Kana, Influence of the cut direction through the semifinished product on the occurrence of cracks for X210Cr12 steel using WEDM, Arch. Civil Mech. Eng. 18 (4) (2018) 1318–1331.

    Article  Google Scholar 

  15. K. Mouralova, J. Kovar, L. Klakurkova, P. Blazik, M. Kalivoda, P. Kousal, Analysis of surface and subsurface layers after WEDM for Ti–6Al–4V with heat treatment, Measurement 116 (1) (2018) 556–564.

    Article  Google Scholar 

  16. M. Mallaiah, R.F. Laubscher, S. Narendranath, S. Basavarajappa, V.N. Gaitonde, Evaluation of wire electro discharge machining characteristics of Ti50Ni50–xCux shape memory alloys, J. Mater. Res. 31 (12) (2016) 1801–1808.

    Article  Google Scholar 

  17. M. Mallaiah, S. Narendranath, S. Basavarajappa, V.N. Gaitonde, Investigation on material removal rate, surface and subsurface characteristics in wire electro discharge machining of Ti50Ni50–xCux shape memory alloy, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 232 (2) (2018) 164–177.

    Google Scholar 

  18. A. Roy, S. Narendranath, Impact of variation in wire electro discharge machining responses of homologous TiNiCu alloys for smart applications: an experimental investigation, Mater. Res. Exp. (2018), https://doi.org/10.1088/2053-1591/aaddee (in press).

  19. H. Soni, S. Narendranath, M.R. Ramesh, Effects of wire electro-discharge machining process parameters on the machined surface of Ti50Ni49Co1 shape memory alloy, Silicon (2018), https://doi.org/10.1007/s12633-017-9687-x (in press).

  20. H. Bisaria, P. Shandilya, Experimental studies on electrical discharge wire cutting of ni-rich NiTi shape memory alloy, Mater. Manufact. Process 33 (9) (2018) 977–985.

    Article  Google Scholar 

  21. M.S. Phadke, Quality Engineering using Roust Design, Pearson Education, New York, Singapore, 2008.

    Google Scholar 

  22. D.G. Montgomery, Design and Analysis of Experiments, 7th ed., John Wiley & Sons, New Delhi, 2009.

    Google Scholar 

  23. M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric, Influence of discharge energy on machining characteristics in EDM, J. Mech. Sci. Technol. 26 (1) (2012) 173–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Gupta, K. & Davim, J.P. On wire spark erosion machining induced surface integrity of Ni55.8Ti shape memory alloys. Archiv.Civ.Mech.Eng 19, 680–693 (2019). https://doi.org/10.1016/j.acme.2019.02.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2019.02.004

Keywords

Navigation