Skip to main content
Log in

Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Magnesium-based materials have promising mechanical properties and potential to serve as implants for loadbearing temporary applications. The main concern about such implants is their strength and resistance for the acting forces. In this investigation, magnesium-based biodegradable Mg65Zn30Ca4Gd1 alloy prepared by combination of innovative Mechanical Alloying (MA) and Spark Plasma Sintering (SPS) methods, was studied for the structure and mechanical properties. Structural studies were performed using X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRD studies were conducted to gain an overview of the phase composition in powdered and sintered samples. The energy dispersive spectroscopy (EDS) additionally determine the chemical composition of the samples. SEM observations were used to examine the morphology of the sinters on the fractured surface after the compressive tests. Mechanical properties of the Mg65Zn30Ca4Gd1 alloy were examined by compressive tests, to determine the compressive strength and Young’s modulus of the samples at room temperature. The paper provides information about the density and porosity of the Mg-based alloy and additionally its corrosion resistance. Moreover the work shows advantages and possibilities of forming multi-compound, morphologically homogeneous alloys with high mechanical properties in the powder metallurgy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ziębowicz, Z. Paszenda, C. Krawczyk, D. Nakonieczny, Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications — a review, Biocybern. Biomed. Eng. 37 (1) (2017) 29–245.

    Google Scholar 

  2. M. Jurczyk, Bionanomaterials, 1st ed., Poznan University of Technology Press, Poznan, 2008 (in Polish).

  3. F. Witte, Y.F. Zheng, X.N. Gu, Biodegradable metals, Mater. Sci. Eng. R 77 (2014) 1–34.

    Article  Google Scholar 

  4. J.F. Loffler, B. Zberg, P.J. Uggowitzer, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887.

    Article  Google Scholar 

  5. S.M. Glasdam, S. Glasdam, G.H. Peters, The importance of magnesium in the human body: a systematic literature review, Adv. Clin. Chem. 73 (2016) 169–193.

    Article  Google Scholar 

  6. Y. Zheng, Magnesium Alloys as Degradable Biomaterials, CRC Press is an Imprint of Taylor & Francis Group, Boca Raton, 2016.

  7. N. Hort, N.I. Zainal Abidin, A. Atrens, Z. Qiao, Z. Shi, Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting, Corros. Sci. 61 (2012) 185–207.

    Article  Google Scholar 

  8. G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci. 49 (2007) 1696–1701.

    Article  Google Scholar 

  9. Q.M. Peng, X.J. Li, N. Ma, R.P. Liu, H.J. Zhang, Effects of backward extrusion on mechanical and degradation properties of Mg-Zn biomaterial, J. Mech. Behav. Biomed. Mater. 10 (2012) 37–128.

    Article  Google Scholar 

  10. S.X. Zhang, X.N. Zhang, C.L. Zhao, et al., Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater. 6 (2) (2010) 40–626.

    Google Scholar 

  11. K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 403 (1–2) (2005) 80–276.

  12. N. Erdmann, N. Angrisani, J. Reifenrath, et al., Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater. 7 (3) (2011) 8–1421.

    Article  Google Scholar 

  13. P. Yin, N.F. Li, T. Lei, L. Liu, C. Ouyang, Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys, J. Mater. Sci. Mater. Med. 24 (6) (2013) 73–1365.

    Article  Google Scholar 

  14. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg0.5Ca-xZn alloys, Corros. Sci. 64 (2012) 97–184.

    Article  Google Scholar 

  15. H. Du, Z.J. Wei, X.W. Liu, E.L. Zhang, Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application, Mater. Chem. Phys. 125 (3) (2011) 75–568.

    Article  Google Scholar 

  16. P. Gill, N. Munroe, R. Dua, S. Ramaswamy, Corrosion and biocompatibility assessment of magnesium alloys, J. Biomater. Nanobiotechnol. 3 (2012) 10–13.

    Article  Google Scholar 

  17. T. Anan, S. Yoshimoto, Y. Kawamura, M. Yamasaki, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scr. Mater. 53 (7) (2005) 799–803.

    Article  Google Scholar 

  18. Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer, F. Feyerabend, N. Hort, Magnesium alloys as implant materials — principles of property design for Mg-RE alloys, Acta Biomater. 6 (5) (2010) 25–1714.

    Google Scholar 

  19. Y.J. Wu, Y.J. Xue, Z.Z. Wang, L. Yang, X.B. Zhang, Biocorosion behavior and cytotoxicity of Mg-Gd-Zn-Zr alloy with long period stacking ordered structure, Mater. Lett. 86 (2012) 5–42.

    Article  Google Scholar 

  20. A. Radoń, A. Drygała Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers, Mater. Charact. 131 (2017) 148–156.

    Article  Google Scholar 

  21. Y.X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application, Quant. Imaging Med. Surg. 1 (1) (2011) 35–40.

    Google Scholar 

  22. H. Hifumi, S. Yamaoka, A. Tanimoto, D. Citterio, K. Suzuki, Gadolinium-based hybrid nanoparticles as a positive MR contrast agent, J. Am. Chem. Soc. 128 (47) (2006) 1–15090.

    Article  Google Scholar 

  23. F. Feyerabend, J. Fischer, J. Holtz, et al., Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta Biomater. 6 (5) (2010) 42–1834.

    Article  Google Scholar 

  24. C. Suryanarayana, Recent developments in mechanical alloying, Rev. Adv. Mater. Sci. 18 (2008) 203–211.

    Google Scholar 

  25. S. Lesz, M. Kremzer, K. Go, lstrok, R. ombek, Nowosielski, Influence of milling time on amorphization of Mg-Zn-Ca powders synthesized by mechanical alloying technique, Arch. Metall. Mater. (2018), In press.

  26. D.T. Chou, D. Hong, P. Saha, S.J. Chung, A. Sirinterlikci, M. Ramanathan, A. Roy, P.N. Kumta, M.K. Datta, Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying, Mater. Sci. Eng. B 176 (2011) 1637–1643.

    Article  Google Scholar 

  27. High Pressure Institute PAN, Helium Pycnometer, 2017 June http://labnano.pl/aparatura/piknometr-helowy/model-1340.

  28. PN-H-04320, Static Test of Metal Compression, 1957.

  29. Marco, Mylar® — Protective Material Conforming to RoHS, REACH and V-2 Combustion Class, 2017 May http://www.labels.pl/mylar.html.

  30. ASTM F746 — 04 Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials, 2014.

  31. M. Kaczmarek:, Physiochemical Properties of Surface Layers of Superelastic NiTi Alloy Designed for Coronary Stents, Silesian University Press, Gliwice, 2015 (in Polish).

  32. P.E. DeGarmo, Materials and Processes in Manufacturing, 5th ed., Collin Macmillan, New York, 1979.

  33. M.B. Yang, T.Z. Guo, H.L. Li, Effects of Gd addition on as-cast microstructur, tensile and creep properties of Mg-3.8 Zn-2.2Ca (wt.%) magnesium alloy, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 587 (2013) 132–142.

    Article  Google Scholar 

  34. Y. Chen, S. Tekumalla, Y.B. Guo, M. Gupta, Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel, Sci. Rep. 6 (2016) 32395, https://www.nature.com/articles/srep32395.

  35. R. Nowosielski, R. Babilas, K. Cesarz-Andreczke, A. Gawlas-Mucha, S. Lesz, P. Sakiewicz, Resorbable Materials for Medical Implants, Silesian University of Technology Press, Gliwice, 2017 (in Polish).

  36. Y. Zhang, M. Zhang, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants, J. Biomed. Mater. Res. 61 (1) (2002) 1–8.

    Article  Google Scholar 

  37. J. Rasek, In the Field of Crystallography and Materials Science, Publishing House of Silesian University, Katowice, 2002 (in Polish).

  38. J.D. Hanawalt, Manual search/match methodes for powder diffraction, Powder Diffr. 1 (1986) 7–13.

    Article  Google Scholar 

  39. H.L. Li, R.J. Cheng, F.S. Pan, H.J. Hu, M.B. Yang, Comparison about effects of minor Z, Sr and Ca additions on microstructure and tensile properties of Mg-5Gd-1.2Mn-0.4Sc (wt.%) magnesium alloy, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 545 (2012) 8–201.

    Article  Google Scholar 

  40. E. Klar, P.K. Samal, Effect of density and sintering variables on the corrosion resistance of austenitic stainless steels, Adv. Powder Metall. Part. Mater. MPIF 3 (1996), 11-3–11-17.

  41. R. Nowosielski, K. Cesarz-Andraczke Impact of Zn and Ca on dissolution rate, mechanical properties and GFA of resorbable Mg-Zn-Ca metallic glasses, Arch. Civ. Mech. Eng. 18 (1) (2018) 1–11.

    Article  Google Scholar 

  42. P.L. Franciska, A. Erryani, D. Annur, I. Kartika, Corrosion behavior of magnesium based foam structure in Hank’s solution, IOP Conf. Ser. Mater. Sci. Eng. 202 (2017) 012035.

    Article  Google Scholar 

  43. J. Yu, J. Wang, Q. Li, J. Shang, J. Cao, X. Sun, Effect of Zn on microstructures and properties of Mg-Zn alloys prepared by powder metallurgy method, Rare Met. Mater. Eng. 45 (11) (2016) 2757–2762.

    Article  Google Scholar 

  44. E. Klar, P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures and Properties, ASM International, 2007.

  45. S. Shabalovskaya, J. Van Humbeeck, Biocompatibility of shape memory alloys, in: T. Yoneyama, S. Miyazaki (Eds.), Shape Memory Alloys for Medical Applications, Woodhead Publishing Limited, Cambridge, UK, 2008.

  46. Z. Gronostajski, P. Bandoła, T. Skubiszewski, Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders, Acta Bioeng. Biomech. 12 (1) (2010) 41–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lesz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesz, S., Kraczla, J. & Nowosielski, R. Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications. Archiv.Civ.Mech.Eng 18, 1288–1299 (2018). https://doi.org/10.1016/j.acme.2018.04.002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.04.002

Keywords

Navigation