Skip to main content
Log in

Eco-friendly fired clay brick manufactured with agricultural solid waste

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Green building materials have attracted attention recently due to sustainability issues. Agricultural waste used as alternative raw materials in the manufacturing of building products, fired clay bricks in particular, is an innovative way of waste utilisation. Large quantities of waste are produced in grain processing. New ways of utilising this waste are required for solving this problem. The main objective of this study is to investigate the effects of agricultural solid waste (oat husk and barley husk and middlings) on the physical and mechanical properties and porosity of fired clay bricks. Brick moulding compounds were prepared by adding 5%, 10% and 20% of oat husk or barley husk and middlings and fired at 900 °C and 1000 °C temperature, keeping them at the highest temperature for 1 h. Oat husk, barley husk and middlings incinerate at 500 °C temperature, thus forming a porous structure in the clay body. The addition of 5–10% of oat husk or barley husk and middlings into brick moulding compound produces eco-friendly fired clay brick having the density of 1300–1800 kg/m3, compressive strength of 3.3–9.5 MPa, total open porosity of 34–49%, water absorption 14–28%. Oat husk or barley husk and middlings reduce the compressive strength of eco-friendly fired clay brick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Muñoz Velasco, M.P. Morales Ortíz M.A. Mendívil Giró, L. Muñoz Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material — a review, Constr. Build. Mater. 63 (2014) 97–107.

    Article  Google Scholar 

  2. C.C. Bories, M.E. Borredon, E. Vedrenne, G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: a review, J. Environ. Manag. 143 (2014) 186–196.

    Article  Google Scholar 

  3. M. Sutcu, S. Ozturk, E. Yalamac, O. Gencel, Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method, J. Environ. Manag. 181 (2016) 185–192.

    Article  Google Scholar 

  4. I. Demir, An investigation on the production of construction brick with processed waste tea, Build. Environ. 41 (9) (2006) 1274–1278.

    Article  Google Scholar 

  5. G. Gorhan, O. Simsek, Porous clay bricks manufactured with rice husks, Constr. Build. Mater. 40 (2013) 390–396.

    Article  Google Scholar 

  6. J. Sutas, A. Mana, L. Pitak, Effect of rice husk and rice husk ash to properties of bricks, Proc. Eng. 32 (2012) 1061–1067.

    Article  Google Scholar 

  7. G.W. Carter, A.M. Cannor, D.S. Mansell, Properties of bricks incorporating unground rice husks, Build. Environ. 17 (4) (1982) 285–291.

    Article  Google Scholar 

  8. R. Chandra, H. Takeuchi, T. Hasegawa, Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production, Renew. Sustain. Energy Rev. 16 (3) (2012) 1462–1476 (review).

  9. N. Sarkar, S. Kumar Ghosh, S. Bannerjee, K. Aikat, Bioethanol production from agricultural wastes: an overview, Renew. Energy 37 (1) (2012) 19–27.

    Article  Google Scholar 

  10. M.A. Rahman, Properties of clay-sand-rice husk ash mixed bricks, Int. J. Cem. Compos. Lightw. Concr. 9 (2) (1987) 105–108.

    Article  Google Scholar 

  11. M.A. Rahman, Effect of rice husk ash on the properties of bricks made from fired lateritic soil–clay mix, Mater. Struct. 21 (3) (1988) 222–227.

    Article  Google Scholar 

  12. D. Tonnayopas, P. Tekasakul, S. Jaritgnam, Effects of rice husk ash on characteristics of lightweight clay brick, in: Technology and Innovation for Sustainable Development Conference (TISD2008), 2008, 36–39.

  13. K.C.P. Faria, R.F. Gurgel, J.N.F. Holanda, Recycling of sugarcane bagasse ash waste in the production of clay bricks, J. Environ. Manag. 101 (30) (2012) 7–12.

    Article  Google Scholar 

  14. S.R. Teixeira, A. Eunice De Souza, G. Tadeu De Almeida Santos, A.F. Vilche Peña, A.G. Miguel, Sugarcane bagasse ash as a potential quartz replacement in red ceramic, J. Am. Ceram. Soc. 91 (6) (2008) 1883–1887.

    Article  Google Scholar 

  15. A.E. Souza, S.R. Teixeira, G.T.A. Santos, F.B. Costa, E. Longo, Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials, J. Environ. Manag. 92 (10) (2011) 2774–2780.

    Article  Google Scholar 

  16. L. Barbieri, F. Andreola, I. Lancellotti, R. Taurino, Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks, Waste Manage. 33 (2013) 2307–2315.

    Article  Google Scholar 

  17. R. Mačiulaitis, Frost Resistance and Durability of Ceramic Facade Products, Technical, Vilnius, 1996. p. 132.

  18. J.F. Peters, Determination of undrained shear strength of low plasticity clays, Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 1 (1991) 13.

    MathSciNet  Google Scholar 

  19. H.H. Murray, Overview: clay mineral applications, Appl. Clay Sci. 5 (5–6) (1991) 379–395.

  20. R.W. Welch, M.V. Hayward, D.I.H. Jones, The composition of oat husk and its variation due to genetic and other factors, J. Sci. Food Agric. 34 (1983) 417–426.

    Article  Google Scholar 

  21. A.K. Bledzki, A.A. Mamun, J. Volk, Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties, Compos. Sci. Technol. 70 (5) (2010) 840–846.

    Article  Google Scholar 

  22. A. Höije, M. Gröndahl, K. Tømmeraas, P. Gatenholm, Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks, Carbohydr. Polym. 61 (3) (2005) 266–275.

    Article  Google Scholar 

  23. R. Mačiulaitis, Frost resistance and long service life of ceramic facade products Brick Tile Ind. Int. 5 (1994) 313–322.

    Google Scholar 

  24. N. Phonphuak, Effects of additive on the physical and thermal conductivity of fired clay brick, J. Chem. Sci. Technol. 2 (2) (2013) 95–99.

    Google Scholar 

  25. N.S. Raut, P. Biswas, T.K. Bhattacharya, K. Das, Effect of bauxite addition on densification and mullitization behaviour of West Bengal clay, Bull. Mater. Sci. 31 (7) (2008) 995–999.

    Article  Google Scholar 

  26. F.A.C. Milheiro, M.N. Freire, A.G.P. Silva, J.N.F. Holanda, Densification behaviour of a red firing Brazilian kaolinitic clay, Ceram. Int. 31 (2005) 757–763.

    Article  Google Scholar 

  27. V. Loryuenyong, T. Panyachai, K. Kaewsimork, C. Siritai, Effects of recycled glass substitution on the physical and mechanical properties of clay bricks, Waste Manag. 29 (2009) 2717–2721.

    Article  Google Scholar 

  28. V. Valanciene, R. Siauciunas, J. Baltusnikaite, The influence of mineralogical composition on the colour of clay body, J. Ceram. Soc. 30 (7) (2010) 1609–1617.

    Article  Google Scholar 

  29. R. Kreimeyer, Some Notes on the firing colour of clay brinks, Appl. Clay Sci. 2 (2) (1987) 175–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kizinievič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizinievič, O., Kizinievič, V., Pundiene, I. et al. Eco-friendly fired clay brick manufactured with agricultural solid waste. Archiv.Civ.Mech.Eng 18, 1156–1165 (2018). https://doi.org/10.1016/j.acme.2018.03.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.03.003

Keywords

Navigation