Skip to main content
Log in

Calibration of constitutive equations under conditions of large strains and stress triaxiality

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Constitutive equations were calibrated to improve their application in assessing a stress field in front of a crack under the conditions of large strains and stress triaxiality. The Bai-Wierzbicki method was adopted, and certain changes and new terms were introduced to incorporate material softening. Five shapes of specimens were tested to cover a wide range of stress triaxiality conditions and Lode factors. Tests were performed at three different temperatures, namely, +20 °C, -20 °C, and -50 °C, and on three different materials obtained by three different heat treatments of S355JR steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. O’Dowd, C.F. Shih, Family of crack-tip fields characterized by a triaxiality parameter — I. Structure of fields, J. Mech. Phys. Solids 39 (1991) 898–1015.

    Google Scholar 

  2. A. Neimitz, J. Galkiewicz, Fracture toughness of structural components. Influence of constraint, Int. J. Pressure Vessels Piping 83 (2006) 42.

    Article  Google Scholar 

  3. A. Neimitz, M. Graba, J. Galkiewicz, An alternative formulation of the Ritchie-Knott-Rice local fracture criterion”, Eng. Fract. Mech. 74 (8) (2007) 1308–1322.

    Article  Google Scholar 

  4. A. Neimitz, I. Dzioba, The influence of the out-of-plane and in-plane constraint on fracture toughness of high strength steel in the ductile to brittle transition temperature range, Eng. Fract. Mech. 147 (2015) 431–448.

    Article  Google Scholar 

  5. N. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel”, Metal. Trans. A 14A (1983) 2277–2287.

  6. G. Rousselier, Ductile fracture models and their potential in local approach to fracture, Nucl. Eng. Des. 109 (1987) 97–111.

    Article  Google Scholar 

  7. F. Mudry, A local approach to cleavage fracture Nucl. Eng. Des. 105 (1987) 65–76.

    Article  Google Scholar 

  8. S.R. Borodet, A.D. Karstensen, D.M. Knowles, C.S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: Model presentation” Part II: application to an offshore structural steel, Eng. Fract. Mech. 72 (2005), 435–452 (Part I), pp. 453–474 (Part II).

  9. A. Pineau, Development of the local approach to fracture over the past 25 years; theory and applications, Int. J. Fract. 138 (2006) 139–166.

    Article  Google Scholar 

  10. X. Gao, C. Ruggieri, R.H. Dodds, Calibration of Weibull stress parameters using fracture toughness data, Int. J. Fract. 92 (1981) 75–200.

    Google Scholar 

  11. X. Gao, R.H. Dodds, Constraint effects on the ductile-to-cleavage transition temperature of ferritic steels: a Weibull stress model, Int. J. Fract. 102 (2000) 43–69.

    Article  Google Scholar 

  12. X. Gao, R.H. Dodds R.L. Tregoning, J.A. Joyce, R.E. Link, A Weibull stress model to predict cleavage fracture in plates containing surface cracks, Fatig. Fract. Eng. Mater. Struct. 22 (1999) 481–493.

    Article  Google Scholar 

  13. X. Gao, R.H. Dodds, An engineering approach to assess constraint effects on cleavage fracture toughness, Eng. Fract. Mech. 68 (2001) 263–283.

    Article  Google Scholar 

  14. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I — yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977) 2– 15.

  15. C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol. 102 (3) (1980) 249– 256.

  16. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32 (1) (1984) 157–169.

    Article  Google Scholar 

  17. J.B. Leblond, G. Perrin, J. Devaux, An improved Gurson-type model for hardenable ductile metals, Eur. J. Mech. — A/Solids 14 (2) (1995) 499–527.

    MathSciNet  MATH  Google Scholar 

  18. T. Pardoen, J.W. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids 48 (2000) 2467– 2512.

  19. A. Benzerga, J. Besson, A. Pineau, Anisotropic ductile fracture part ii: theory, Acta Mater. 52 (2004) 4639–4650.

    Article  Google Scholar 

  20. K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear failure, Eur. J. Mech. – A/Solids 27 (2008) 1–17.

    Article  Google Scholar 

  21. K.L. Nielsen, V. Tvergaard, Ductile shear failure of plug failure of spot welds modeled by modified Gurson model, Eng. Fract. Mech. 77 (2010) 1031–1047.

    Article  Google Scholar 

  22. Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (1) (2004) 81–98.

    Article  Google Scholar 

  23. Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. Fract. 161 (2010) 1–20.

    Article  Google Scholar 

  24. Y. Bai, T. Wierzbicki A new model plasticity and fracture with pressure and Lode dependence, Int. J. Plast. 24 (2008) 1071–1096.

    Article  Google Scholar 

  25. M. Algarni, Y. Bai Y. Choi, A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture, Eng. Fract. Mech. 147 (2015) 140–157.

    Article  Google Scholar 

  26. D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hasford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, Int. J. Solids Struct. 67–68 (2015) 40–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Neimitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neimitz, A., Galkiewicz, J. & Dzioba, I. Calibration of constitutive equations under conditions of large strains and stress triaxiality. Archiv.Civ.Mech.Eng 18, 1123–1135 (2018). https://doi.org/10.1016/j.acme.2018.02.013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.02.013

Keywords

Navigation