Skip to main content
Log in

Test setup for examination of magneto-mechanical properties of magnetorheological elastomers with use of a novel approach

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an experimental setup aiming at evaluating the magneto-mechanical and damping properties of the thermoplastic magnetorheological elastomer (MRE). The idea of the system is to create controllable conditions similar to those present in a vehicles and other mechanical constructions and to make it possible to determine parameters only relating to the MRE material itself. The test stand is based on four samples stimulated with highly effective Halbach arrays. The upper plate of the test stand is excited with use of a modal shaker to assure a constant impact force value during each test. This enables control of impact character and allows automation of the test stand. The last section of this paper presents preliminary test conducted to find the resonance frequency dependence on the impact force of the system for a constant value of magnetic field. The results indicate nonlinear behavior of the material and therefore exclude use of the simple Kelvin-Voight model based approach for damping properties determination, that is a commonly used model for description of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Rigbi, L. Jilken, The response of an elastomer filled with soft ferrite to mechanical and magnetic influences, Journal of Magnetism and Magnetic Materials 37 (3) (1983) 267–276.

    Article  Google Scholar 

  2. Y. Li, J. Li, W. Li, H. Du, A state-of-the-art review on magnetorheological elastomer devices, Smart Materials and Structures 23 (2014), 123001 (24 pp.).

    Article  Google Scholar 

  3. G.V. Stepanov, S.S. Abramchuk, D.A. Grishin, L.V. Nikitin, E.Y. Kramarenko, A.R. Khokhlov, Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers, Polymer 48 (2) (2007) 488–495.

    Article  Google Scholar 

  4. J.L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Progress in Polymer Science 27 (4) (2002) 627–687.

    Article  Google Scholar 

  5. J.D. Carlson, M.R. Jolly, Mr fluid, foam and elastomer devices, Mechatronics 10 (4–5) (2000) 555–569.

    Article  Google Scholar 

  6. M. Lokander, B. Stenberg, Performance of isotropic magnetorheological rubber materials, Polymer Testing 22 (3) (2003) 245–251.

    Article  Google Scholar 

  7. A.V. Chertovich, G.V. Stepanov, A.R. Kramarenko, E. Yu, Khokhlov, New composite elastomers with giant magnetic response, Macromolecular Materials and Engineering 295 (2010) 336–341.

    Article  Google Scholar 

  8. V.V. Sorokin, E. Ecker, G.V. Stepanov, M. Shamonin, G.J. Monkman, E.Y. Kramarenko, A.R. Khokhlov, Experimental study of the magnetic field enhanced payne effect in magnetorheological elastomers, Soft Matter 10 (2014) 8765–8776.

    Article  Google Scholar 

  9. A. Gasperowicz, J. Kaleta, D. Lewandowski, P. Zajac, Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing, Smart Materials & Structures 19 (4) (2010) 1–7.

    Google Scholar 

  10. M. Kallio, The elastic and damping properties of magnetorheological elastomers, VTT Technical Research Centre of Finland, 2005.

    Google Scholar 

  11. J. Wu, X. Gong, Y. Fan, H. Xia, Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field, Smart Materials and Structures 19 (10) (2010) 105007.

    Article  Google Scholar 

  12. J. Kaleta, M. Królewicz, D. Lewandowski, Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices, Smart Materials & Structures 20 (8) (2011) 1–12.

    Article  Google Scholar 

  13. J. Kaleta, D. Lewandowski, P. Zajac, Metal, Ceramic and Polymeric Composites for Various Uses, Ch. Smart magnetic composites, InTech 2011, pp. 475–504.

    Google Scholar 

  14. M.J. Ginder, M.E. Nichols, L.D. Elie, S.M. Clark, Controllablestiffness components based on magnetorheological elastomers, in: Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Vol. 103, 2000.

  15. M. Usman, S.H. Sung, D.D. Jang, H.J. Jung, J.H. Koo, Numerical investigation of smart base isolation system employing MR elastomer, Journal of Physics: Conference Series 149 (1) (2009) 012099.

    Google Scholar 

  16. M. J. Ginder, W. F. Schlotter, M. E. Nichols, Magnetorheological elastomers in tunable vibration absorbers, in: Smart Structures and Materials 2001: Damping and Isolation, Vol. 418, 2001.

  17. H.X. Deng, X.L. Gong, L.H. Wang, Development of an adaptive tuned vibration absorber with magnetorheological elastomer, Smart Materials and Structures 15 (5) (2006) N111.

    Article  Google Scholar 

  18. Y.-K. Kim, J.H. Koo, K.-S. Kim, S. Kim, Developing a real time controlled adaptive MRE-based tunable vibration absorber system for a linear cryogenic cooler, in: ASME International Conference on Advanced Intelligent Mechatronics, 2011.

    Google Scholar 

  19. C. Collette, G. Kroll, G. Saive, V. Guillemier, M. Avraam, On magnetorheologic elastomers for vibration isolation, damping and stress reduction in mass-varying structures, Journal of Intelligent Materials Systems and Structures 21 (2010) 1463–1469.

    Article  Google Scholar 

  20. Y. Li, J. Li, W. Li, T. Tian, A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control, Smart 22 (2013), 095020 (18 pp.).

    Google Scholar 

  21. M. Behrooz, X. Wang, F. Gordaninejad, Modeling of a new semi-active/passive magnetorheological elastomer isolator, Smart Materials and Structures 23 (2014), 045013 (7 pp.).

    Article  Google Scholar 

  22. W. Li, X. Zhang, H. Du, Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control, Journal of Intelligent Materials Systems and Structures 23 (2012) 22–39.

    Google Scholar 

  23. A. Alberdi-Muniain, N. Gil-Negrete, L. Kari, Modelling energy flow through magneto-sensitive vibration isolators, International Journal of Engineering Science 65 (0) (2013) 22–39.

    Article  Google Scholar 

  24. A.A. Lemer, K.A. Cunefare, Performance of mre-based vibration absorbers, Journal of Intelligent Material Systems and Structures 19 (2008) 551–563.

    Article  Google Scholar 

  25. M. Bocian, J. Kaleta, D. Lewandowski, M. Przybylski, Test stand and method for determination of the usefulness of the magnetorheological composites in active suspension systems, Key Engineering Materials 598 (2014) 7–12.

    Article  Google Scholar 

  26. M. Bocian, J. Kaleta, D. Lewandowski, M. Przybylski, Design concept of test stand for determining properties of magnetorheological elastomer, Acta Mechanica et Automatica 7 (3) (2013) 131–134.

    Article  Google Scholar 

  27. M. Behrooz, X. Wang, F. Gordaninejad, Performance of a new magnetorheological elastomer isolation system, Smart Materials and Structures 23 (2014), 045014 (8 pp.).

    Article  Google Scholar 

  28. M. Przybylski, Testing magneto-mechanical properties of magnetorheological elastomers obtained with use of single degree of freedom test stand, Master’s thesis, Wroclaw University of Technology, 2012.

    Google Scholar 

  29. J. Tuma, A. Bilosova, J. Slimek, R. Svoboda, A simulation study of the rotor vibration in a journal bearing, Engineering Mechanics 15 (6) (2008) 461–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Przybylski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocian, M., Kaleta, J., Lewandowski, D. et al. Test setup for examination of magneto-mechanical properties of magnetorheological elastomers with use of a novel approach. Archiv.Civ.Mech.Eng 16, 294–303 (2016). https://doi.org/10.1016/j.acme.2015.12.002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2015.12.002

Keywords

Navigation