Skip to main content
Log in

Effect of pre-existing shear bands on mechanical properties and serration behaviors in bulk metallic glasses

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Pre-existing (multiple) shear bands were introduced into the ductile Zr56Co28Al16 and Zr65 Ni10 Cu15 Al10 bulk metallic glasses (BMGs) through the lateral-deformation, respectively. It was found that the pre-exiting shear bands can further enhance the compressive plasticity of ductile BMGs. According to the serration analysis on the plastic deformation of the as-cast and the pre-deformed samples, the serration events in the stress-strain curves during deformation display a self-organized critical ( SOC) behavior. Compared with the as-cast BMGs, a larger power-law scaling exponent calculated based on serrated flow behaviors becomes larger for the pre-deformed BMGs, implying that the shear banding stability of BMGs is effectively enhanced. This should be caused by the pronounced interactions of shear bands during plastic deformation for the pre-deformed BMGs. However, by introducing a large amount of multiple shear bands into the glassy matrix, it also becomes easier for shear bands to propagate along the pre-existing shear bands, leading to a lower cut-off elastic energy density for the pre-deformed BMGs. More multiple shear bands with stronger interactions for the pre-deformed BMGs could provide a larger chance to activate the shear-band cracking but less local elastic energies are remained for the subsequent crack-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, A. Takeuchi, Mater. Trans. 43 (2002) 1892–1906.

    Article  Google Scholar 

  2. W. H. Wang, C. Dong, C. H. Shek, Mater. Sci. Eng. R 44 (2004) 45–89.

    Article  Google Scholar 

  3. M. F. Ashby, A. L. Greer, Scripta Mater. 54 (2006) 321–326.

    Article  Google Scholar 

  4. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067–4109.

    Article  Google Scholar 

  5. M. M. Trexler, N. N. Thadhani, Prog. Mater. Sci. 55 (2010) 759–839.

    Article  Google Scholar 

  6. A. L. Greer, Y. Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71–132.

    Article  Google Scholar 

  7. J. J. Lewandowski, A. L. Greer, Nat. Mater. 5 (2006) 15–18.

    Article  Google Scholar 

  8. F. Spaepen, Acta Metall. 25 (1977) 407–415.

    Article  Google Scholar 

  9. A. S. Argon, Acta Metall. 27 (1979) 47–58.

    Article  Google Scholar 

  10. M. L. Falk, J. S. Langer, Phys. Rev. E 57 (1998) 7192–7205.

    Article  Google Scholar 

  11. M. Q. Jiang, L. H. Dai, J. Mech. Phys. Solids 57 (2005) 1267–1292.

    Article  Google Scholar 

  12. S. X. Song, T. G. Nieh, Intermetallics 17 (2009) 762–767.

    Article  Google Scholar 

  13. D. Klaumünzer, R. Maaβ, J. F. Löffler, J. Mater. Res. 26 (2011) 1453–1463.

    Article  Google Scholar 

  14. Z. Wang, J. W. Qiao, H. Tian, B. A. Sun, B. C. Wang, B. S. Xu, M. W. Chen, Appl. Phys. Lett. 107 (2015) 201902.

    Article  Google Scholar 

  15. Y. Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379–473.

    Article  Google Scholar 

  16. J. W. Qiao, Y. Zhang, J. Iron Steel Res. Int. 23 (2016) 7–13.

    Article  Google Scholar 

  17. J. W. Qiao, H. L. Jia, C. P. Chuang, E. W. Huang, G. Y. Wang, P. K. Liaw, Y. Ren, Y. Zhang, Scripta Mater. 63 (2010) 871–874.

    Article  Google Scholar 

  18. Z. Y. Liu, Y. Yang, C. T. Liu, J. Iron Steel Res. Int. 23 (2016) 53–56.

    Article  Google Scholar 

  19. Z. Wang, J. J. Li, L. W. Ren, Y. Zhang, J. W. Qiao, B. C. Wang, J. Iron Steel Res. Int. 23 (2016) 42–47.

    Article  Google Scholar 

  20. B. A. Sun, C. T. Liu, Y. Yang, J. Iron Steel Res. Int. 23 (2016) 24–30.

    Article  Google Scholar 

  21. S. Feng, G. Li, P. Yu, S. Zhang, M. Ma, L. Qi, R. Liu, Metall. Mater. Trans. A 46 (2015) 1119–1124.

    Article  Google Scholar 

  22. F. F. Wu, Z. F. Zhang, S. X. Mao, J. Mater. Res. 22 (2007) 501–507.

    Article  Google Scholar 

  23. Z. Han, W. F. Wu, Y. Li, Y. J. Wei, H. J. Gao, Acta Mater. 57 (2009) 1367–1372.

    Article  Google Scholar 

  24. K. Mondai, K. Hono, Mater. Trans. 50 (2009) 152–157.

    Article  Google Scholar 

  25. S. X. Song, H. Bei, J. Wadsworth, T. G. Nieh, Intermetallics 16 (2008) 813–818.

    Article  Google Scholar 

  26. R. Maaβ, D. Klaumünzer, J. F. Löffler, Acta Mater. 59 (2011) 3205–3213.

    Article  Google Scholar 

  27. F. H. Dalla Torre, A. Dubach, J. Schällibaum, J. F. Löffler, Acta Mater. 56 (2008) 4635–4646.

    Article  Google Scholar 

  28. J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, J. Eckert, Phys. Rev. Lett. 94 (2005) 205501.

    Article  Google Scholar 

  29. J. L. Ren, C. Chen, G. Wang, N. Mattern, J. Eckert, AIP Adv. 1 (2011) 032158.

    Article  Google Scholar 

  30. B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, W. H. Wang, Phys. Rev. Lett. 105 (2010) 035501.

    Article  Google Scholar 

  31. R. A. Sun, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U. Kühn, J. Eckert, Acta Mater. 60 (2012) 4160–4171.

    Article  Google Scholar 

  32. B. A. Sun, S. Pauly, J. Hu, W. H. Wang, U. Kühn, J. Eckert, Phys. Rev. Lett. 110 (2013).

  33. G. Wang, K. C. Chan, L. Xia, P. Yu, J. Shen, W. H. Wang, Acta Mater. 57 (2009) 6146–6155.

    Article  Google Scholar 

  34. Z. Y. Liu, G. Wang, K. C. Chan, J. L. Ren, Y. J. Huang, X. L. Bian, X. H. Xu, D. S. Zhang, Y. L. Gao, Q. J. Zhai, J. Appl. Phys. 114 (2013) 033520.

    Article  Google Scholar 

  35. Z. Y. Liu, G. Wang, K. C. Chan, J. L. Ren, Y. J. Huang, X. L. Bian, X. H. Xu, D. S. Zhang, Y. L. Gao, Q. J. Zhai, J. Appl. Phys. 114 (2013) 033521.

    Article  Google Scholar 

  36. G. Wang, S. Pauly, S. Gorantla, N. Mattern, J. Eckert, J. Mater. Sci. Technol. 30 (2014) 609–615.

    Article  Google Scholar 

  37. X. Tong, G. Wang, J. Yi, J. L. Ren, S. Pauly, Y. L. Gao, Q. J. Zhai, N. Mattern, K. A. Dahmen, P. K. Liaw, J. Eckert, Int. J. Plast. 77 (2016) 141–155.

    Article  Google Scholar 

  38. K. K. Song, S. Pauly, Y. Zhang, S. Scudino, P. Gargarella, K. B. Surreddi, U. Kühn, J. Eckert, Intermetallics 19 (2011) 1394–1398.

    Article  Google Scholar 

  39. M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, J. Eckert, Scripta Mater. 62 (2010) 678–681.

    Article  Google Scholar 

  40. S. Scudino, B. Jerliu, S. Pauly, K. B. Surreddi, U. Kühn, J. Eckert, Scripta Mater. 65 (2011) 815–818.

    Article  Google Scholar 

  41. Y. Zhang, W. H. Wang, A. L. Greer, Nat. Mater. 5 (2006) 857–860.

    Article  Google Scholar 

  42. Y. H. Liu, C. T. Liu, W. H. Wang, A. Inoue, T. Sakurai, M. W. Chen, Phys. Rev. Lett. 103 (2009) 065504.

    Article  Google Scholar 

  43. D. Ma, A. D. Stoica, X. L. Wang, Appl. Phys. Lett. 91 (2007) 021905.

    Article  Google Scholar 

  44. B. Poon, D. Rittel, G. Ravichandran, Int. J. Solids Struct. 45 (2008) 6018–6033.

    Article  Google Scholar 

  45. Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Science 315 (2007) 1385–1388.

    Article  Google Scholar 

  46. G. Z. Ma, K. K. Song, B. A. Sun, Z. J. Yan, U. Kühn, D. Chen, J. Eckert, J. Mater. Sci. 48 (2013) 6825–6832.

    Article  Google Scholar 

  47. A. Slipenyuk, J. Eckert, Scripta Mater. 50 (2004) 39–44.

    Article  Google Scholar 

  48. L. Y. Chen, Z. D. Fu, G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D. Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B. Y. Wang, Y. W. Zeng, J. Z. Jiang, Phys. Rev. Lett. 100 (2008) 075501.

    Article  Google Scholar 

  49. H. B. Yu, J. Hu, X. X. Xia, B. A. Sun, X. X. Li, W. H. Wang, H. Y. Bai, Scripta Mater. 61 (2009) 640–643.

    Article  Google Scholar 

  50. R. T. Qu, Z. Q. Liu, G. Wang, Z. F. Zhang, Acta Mater. 91 (2015) 19–33.

    Article  Google Scholar 

  51. K. M. Flores, Scripta Mater. 54 (2006) 327–332.

    Article  Google Scholar 

  52. K. M. Flores, E. Sherer, A. Bharathula, H. Chen, Y. C. Jean, Acta Mater. 55 (2007) 3403–3411.

    Article  Google Scholar 

  53. X. F. Pan, H. Zhang, Z. F. Zhang, M. Stoica, G. He, J. Eckert, J. Mater. Res. 20 (2011) 2632–2638.

    Article  Google Scholar 

  54. F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318 (2007) 251–254.

    Article  Google Scholar 

  55. D. L. Malandro, D. J. Lacks, J. Chem. Phys. 110 (1999) 4593–4601.

    Article  Google Scholar 

  56. Z. F. Zhang, J. Eckert, L. Schultz, Acta Mater. 51 (2003) 1167–1179.

    Article  Google Scholar 

  57. R. Maaβ, P. Birckigt, C. Borchers, K. Samwer, C. Volkert, Acta Mater. 98 (2015) 94–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-kai Song Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Xd., Wang, Sh., Song, Kk. et al. Effect of pre-existing shear bands on mechanical properties and serration behaviors in bulk metallic glasses. J. Iron Steel Res. Int. 24, 402–410 (2017). https://doi.org/10.1016/S1006-706X(17)30060-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30060-2

Key words

Navigation