Skip to main content
Log in

Tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To investigate the tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure, tensile tests with strains of 0.05, 0.12 and 0.22 were performed at room temperature. Microstructure of tested steels was observed by means of optical microscopy (OM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Tensile mechanical properties of tested steels were obtained, and the influence of bainite content on deformation behavior was also discussed. Meanwhile, the deformation mechanism of steel with three kinds of microstructures of bainite, pearlite and ferrite was analyzed. Results show that tested steel with high volume fraction of bainite exhibits a continuous deformation behavior, and this may be attributed to a higher bainite volume fraction and a lower mobile dislocation density. The morphology of microstructure will influence the mechanical properties of tested steels. An increasing content of bainite can improve the tensile strength, but reduce the plasticity and toughness of the tested steels. In the deformation process of 0.039Nb steel, the ferrite and bainite have priorities to deform, and the deformation exhibits co-deformation of all microstructures in the later stage of deformation. In the deformation process of 0.024Nb-0.032V steel, the ferrite and pearlite have priorities to deform, and the deformation exhibits co-deformation of all microstructures in the later stage of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. K. Lv, G. M. Sheng, Z. H. Huang, Constr. Build. Mater. 48 (2013) 67–73.

    Article  Google Scholar 

  2. G. M. Sheng, S. H. Gong, Acta Metall. Sin. (Engl. Lett.) 10 (1997) No. 1, 51–55.

    MathSciNet  Google Scholar 

  3. E. Martinez-Romero, J. Constr. Steel Res. 46 (1998) No. 1–3, 5–6.

    Article  Google Scholar 

  4. B. M. Huang, H. W. Yen, D. Ho, H. Ho, J. R. Yang, Scripta Mater. 67 (2012) No. 5, 431–434.

    Article  Google Scholar 

  5. M. R. Akbarpour, A. Ekrami, Mater. Sci. Eng. A 477 (2008) No. 1–2, 306–310.

    Article  Google Scholar 

  6. R. Bakhtiari, A. Ekrami, Mater. Sci. Eng. A 525 (2009) No. 1–2, 159–165.

    Article  Google Scholar 

  7. A. Zare, A. Ekrami, Mater. Sci. Eng. A 528 (2011) No. 13–14, 4422–4426.

    Article  Google Scholar 

  8. C. Garcia-Mateo, F. G. Caballero, ISIJ Int. 45 (2005) No. 11, 1736–1740.

    Article  Google Scholar 

  9. A. Bag, K. K. Ray, E. S. Dwarakadasa, Metall. Mater. Trans. A 30 (1999) No. 5, 1193–1202.

    Article  Google Scholar 

  10. B. Y. Choi, G. Krauss, D. K. Matlock, Scripta Metall. 22 (1988) No. 9, 1575–1580.

    Article  Google Scholar 

  11. H. K. D. H. Bhadeshia, Bainite in Steels, 2nd ed., Institute of Materials, London, 2001.

    Google Scholar 

  12. M. Sudo, T. Iwai, Trans. ISIJ 23 (1983) No. 4, 294–302.

    Article  Google Scholar 

  13. A. R. Marder, Metall. Trans. A 12 (1981) No. 9, 1569–1579.

    Article  Google Scholar 

  14. L. M. Fu, Z. M. Li, H. R. Wang, W. Wang, A. D. Shan, Scripta Mater. 67 (2012) No. 3, 297–300.

    Article  Google Scholar 

  15. D. W. Suh, J. H. Bae, J. Y. Cho, K. H. Oh, H. C. Lee, ISIJ Int. 41 (2001) No. 7, 782–787.

    Article  Google Scholar 

  16. J. Lian, Z. Jiang, J. Liu, Mater. Sci. Eng. A 147 (1991) No. 1, 55–65.

    Article  Google Scholar 

  17. A. Roy, R. H. J. Peerlings, M. G. D. Geers, Y. Kasyanyuk, Mater. Sci. Eng. A 486 (2008) No. 1–2, 653–661.

    Article  Google Scholar 

  18. G. T. Hahn, Acta Metall. 10 (1962) No. 8, 727–738.

    Article  Google Scholar 

  19. S. J. Kim, C. G. Lee, T. H. Lee, C. S. Oh, Scripta Mater. 48 (2003) No. 5, 539–544.

    Article  Google Scholar 

  20. F. Yoshida, Int. J. Plasticity 16 (2000) No. 3–4, 359–380.

    Article  Google Scholar 

  21. Z. M. Li, L. M. Fu, B. Fu, A. D. Shan, Mater. Lett. 96 (2013) 1–4.

    Article  Google Scholar 

  22. A. Barbacki, J. Mater. Process. Technol. 53 (1995) No. 1–2, 57–63.

    Article  Google Scholar 

  23. A. Kumar, S. B. Singh, K. K. Ray, Mater. Sci. Eng. A 474 (2008) No. 1–2, 270–282.

    Article  Google Scholar 

  24. P. Spätig, J. Bonneville, J. L. Martin, Mater. Sci. Eng. A 167 (1993) No. 1–2, 73–79.

    Article  Google Scholar 

  25. T. H. Alden, Metall. Trans. A 18 (1987) No. 1, 51–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-chun Cao Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zy., Cao, Jc., Zhong, Zh. et al. Tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure. J. Iron Steel Res. Int. 24, 111–120 (2017). https://doi.org/10.1016/S1006-706X(17)30016-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30016-X

Key words

Navigation