Skip to main content
Log in

Grain Growth Behavior of Inconel 625 Superalloy

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The grain growth (GG) behavior of Inconel 625 superalloy was studied in the temperature range of 900 – 1 250 °C and holding time range of 10 – 80 min. Microstructures of the alloy were characterized by optical metallography, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Grains grew obviously with either increasing temperature or extending holding time at temperatures above 1050 °C. However, at temperatures lower than 1050 °C, the GG was sluggish due to the pinning effect of carbide particles on grain boundary (GB). Threshold temperature for transition from mixed grain structure to uniform one was considered to be around 1100 °C. Once the temperatures surpassed 1 200 °C, an instant increase in the grain size occurred showing no dependence on holding time. TEM analysis showed that the dominant second phase formed heterogeneously on the GB was M6C, which significantly impeded grain growth. On the basis of experimental data, the mathematical model of GG was established, which can describe GG behavior of Inconel 625 alloy during solution treatment (ST) at 1100–1250 °C. The activation energy for GG of Inconel 625 alloy was 207. 3 kJ, which suggested that the GG of Inconel 625 alloy was controlled by the process of GB diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Pollock. S. Tin, J. Propul. Power 22 (2006) 361–374.

    Article  Google Scholar 

  2. S. L. Semiatin, K. E. Mcclary, A. D. Rollett, C. G. Roberts, E. J. Payton, F. Zhang, T. P. Gab, Metall. Mater. Trans. A 43 (2012) 1649–1661.

    Article  Google Scholar 

  3. K. H. Song, K. Nakata, Mater. Des. 31 (2010) 2942–2947.

    Article  Google Scholar 

  4. S. J. Lee, Y. K. Lee, Mater. Des. 29 (2008) 1840–1844.

    Article  Google Scholar 

  5. J.W. Morris Jr., Science 320 (2008) 1022–1023.

    Article  Google Scholar 

  6. S. C. Medeiros, W. G. Frazier, Y. V. R. K. Prasad, Metall. Trans. A 31 (2000) 2317–2325.

    Article  Google Scholar 

  7. D. Li, Q. M. Guo, S. L. Guo, H.J. Peng, Z. G. Wu, Mater. Des. 32 (2011) 696–705.

    Article  Google Scholar 

  8. Q. Zhang, R. Tang, C. Li, X. Luo, C. S. Long, K. J. Yin, Nucl. Eng. Technol. 41 (2009) 107–112.

    Article  Google Scholar 

  9. K. P. Cooper, P. Slebodnick, E. D. Thomas, Mater. Sci. Eng. A 206 (1996) 138–149.

    Article  Google Scholar 

  10. K. H. Song, K. Nakata, Mater. Des. 31 (2010) 2942–2947.

    Article  Google Scholar 

  11. E. X. Pu, W. J. Zheng, J. Z. Xiang, Z. G. Song, J. Li, Mater. Sci. Eng. A 598 (2014) 174–182.

    Article  Google Scholar 

  12. E. X. Pu, M. Liu, W.J. Zheng, Z. G. Song, Y. Z. Miao, J. Mater. Eng. Perform. 24 (2015) 3897–3904.

    Article  Google Scholar 

  13. E. X. Pu, W. J. Zheng, Z. G. Song, J. Z. Xiang, X. P. Wei, J. Iron Steel Res. Int. 21 (2014) No. 10, 975–982.

    Article  Google Scholar 

  14. W. F. Smith, J. Hashemi, Foundations of Materials Science and Engineering, China Machine Press, Beijing, 2011.

    Google Scholar 

  15. S. G. Kim, Y. B. Park, Acta Metall. Mater. 56 (2008) 3739–3753.

    Article  Google Scholar 

  16. G. Lvov, V. I. Levit, M. J. Kaufman, Metall. Mater. Trans. A 35 (2004) 1669–1679.

    Article  Google Scholar 

  17. S. J. Patel, G. D. Smith, The Role of Niobium in Wrought Superalloys, Superalloys 718, 625, 706 and Various Derivatives, 2005, pp. 135–154.

  18. G. Bai, J. Li, R. Hu, T. Zhang, H. Kou, H. Fu, Mater. Sci. Eng. A 528 (2011) 2339–2344.

    Article  Google Scholar 

  19. V. Y. Novikov, Mater. Lett. 84 (2012) 136–138.

    Article  Google Scholar 

  20. W. Li, K. Xia, Mater. Sci. Eng. A 329–331 (2002) 430–434.

    Article  Google Scholar 

  21. N. Raghunthan, T. Sheppard, Mater. Sci. Tech. 6 (1986) 542–547.

    Google Scholar 

  22. Q. L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  23. J. Q. Zhang, H. S. Di, X. Y. Wang, Y. Cao, J. C. Zhang, T.J. Ma, Mater. Des. 44 (2013) 354–364.

    Article  Google Scholar 

  24. S. S. Zhang, M. Q. Li, Y. G. Liu, J. Luo, T. Q. Liu, Mater. Sci. Eng. A 528 (2011) 4967–4972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Liu or Wen-jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zheng, Wj., Xiang, Jz. et al. Grain Growth Behavior of Inconel 625 Superalloy. J. Iron Steel Res. Int. 23, 1111–1118 (2016). https://doi.org/10.1016/S1006-706X(16)30164-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30164-9

Key words

Navigation