Skip to main content
Log in

Rolling Contact Fatigue Properties of SAE 8620 Steel after Case Carburizing

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Rolling contact fatigue (RCF) properties of SAE 8620 steel after case carburizing have been investigated under two contact stresses of 4.0 and 5.5 GPa. Results show that the RCF life ranges from 2.5 × 106 to 3 × 107 cycles under the contact stress of 5.5 GPa, while it can be more than 1 × 108 cycles under the contact stress of 4.0 GPa. The rated fatigue life L10 (lives with the 10% failure) is also drastically shortened from 9.8 × 106 to 5.4 × 105 cycles when the contact stress is increased from 4.0 to 5.5 GPa. Theoretical calculations and fractographs show that the maximum shear stress and the contact area increase with increasing the contact stress, making RCF tend to occur earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ding, N. F. Rieger, Wear 254 (2003) 1307–1317.

    Article  Google Scholar 

  2. K. Hashimoto, K. Hiraoka, K. Kida, E. C. Santos, Mater. Des. 32 (2011) 4980–4985.

    Article  Google Scholar 

  3. A. Bhattacharyya, G. Subhash, N. Arakere, Int. J. Fatigue 59 (2004) 102–113.

    Article  Google Scholar 

  4. K. H. Kim, J. S. Lee, Mater. Sci. Technol. 28 (2012) 50–54.

    Article  Google Scholar 

  5. L. Wang, G. L. Liu, M. Seki, M. Fujii, Q. Li, Appl. Mech. Mater. 86 (2011) 645–648.

    Article  Google Scholar 

  6. L. M. Berger, K. Lipp, U. May, in: B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, G. Montavon (Eds.), Proceedings of the International Thermal Spray Conference, ASM International 2009, Materials Park, Ohio, 2009, pp. 1036–1040.

    Google Scholar 

  7. Y. Liu, M. Q. Wang, J. Shi, W. J. Hui, G. Fan, H. Dong, Int. J. Fatigue 31 (2009) 292–299.

    Article  Google Scholar 

  8. G. Lundberg, A. Palmgren, Acta Polytech, Mech. Eng. Ser. 1 (1947) 1–52.

    Google Scholar 

  9. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, E. C. Santos, Mater. Des. 32 (2011) 1605–1611.

    Article  Google Scholar 

  10. M. T. Huber, Ann. Phys. 14 (1904) 153–163.

    Article  Google Scholar 

  11. H. Poritsky, ASME J. Appl. Mech. 17 (1950) 191–201.

    MathSciNet  Google Scholar 

  12. J. O. Smith, C. K. Liu, ASME J. Appl. Mech. 20 (1953) 157–166.

    Google Scholar 

  13. A. Sackfield, D. A. Hills, J. Strain Anal. Eng. Des. 18 (1983) 101–105.

    Article  Google Scholar 

  14. K. L. Johnson, Contact Mechanics, Cambridge University Press, New York, 1985.

    Book  Google Scholar 

  15. W. Yan, F. D. Fischer, Arch. Appl. Mech. 70 (2000) 225–268.

    Article  Google Scholar 

  16. T. A. Harris, M. N. Kotzalas, Rolling Bearing Analysis, 5th ed., CRC Press, London, 2007.

    Google Scholar 

  17. Y. L. Wu, Theory of Elasticity, Tongji University Press, Shanghai, 1987.

    Google Scholar 

  18. H. Hertz, J. Reine Angew. Math. 92 (1882) 156–171.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-guang Cao.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation for Youth of China (51301042)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Yg., Xu, L., Zhang, Gq. et al. Rolling Contact Fatigue Properties of SAE 8620 Steel after Case Carburizing. J. Iron Steel Res. Int. 23, 711–716 (2016). https://doi.org/10.1016/S1006-706X(16)30110-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30110-8

Key words

Navigation