Skip to main content
Log in

Influence of Screw Design on Burden Descending Velocity and Particle Segregation in COREX Shaft Furnace

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

COREX shaft furnace (SF) is an industrial system that employs screw feeders; thus, the burden descending velocity and particle segregation in the SF can be directly affected by the design of screw. A three-dimensional actual size model of COREX-3000 SF was established using the discrete element method. Four types of burdens, including pellet, ore, flux and coke, were considered in this model. With this consideration, the effect of screw design on solid flow was investigated. Results showed that, in the base case, burdens fell primarily down from the first flight of the screw. The burden descending velocities were nearly uniform in the peripheral direction and decreased along the radial direction. In addition, the normalized particle size increased in the center area and decreased in the wall area. Reducing the flight diameter of screw benefited an even flow pattern and restrained the rolling tendency of burden from the edge to center areas. An optimized case was also proposed, in which a uniform solid flow profile could be obtained and the evenness of descending velocity along the radius could be greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Zhou, Iron and Steel 40 (2005) No. 11, 1–8.

    Google Scholar 

  2. B. Anameric, S. K. Kawtra, Miner. Process. Extr. Metall. 30 (2008) 1–51.

    Article  Google Scholar 

  3. Y. X. Qu, Y. X. Yang, Z. S. Zou, C. Zeilstra, K. Meijer, R. Boom, ISIJ Int. 54 (2014) 2196–2205.

    Article  Google Scholar 

  4. N. Wang, X. M. Xie, Z. S. Zou, L. Guo, W. R. Xu, Y. S. Zhou, Steel Res. Int. 79 (2008) 547–552.

    Article  Google Scholar 

  5. Y. X. Qu, Z. S. Zou, Y. P. Xiao, ISIJ Int. 52 (2012) 2186–2193.

    Article  Google Scholar 

  6. H. F. Li, Z. G. Luo, Z. S. Zou, J. J. Sun, L. H. Han, Z. X. Di, J. Iron Steel Res. Int. 19 (2012) No. 9, 36–42.

    Article  Google Scholar 

  7. J. J. Sun, Z. G. Luo, Z. S. Zou, Powder Technol. 281 (2015) 159–166.

    Article  Google Scholar 

  8. L. H. Han, Z. G. Luo, X. L. Zhou, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. Iron Steel Res. Int. 20 (2013) No. 3, 30–35.

    Article  Google Scholar 

  9. Q. Li, M. X. Feng, Z. S. Zou, ISIJ Int. 53 (2013) 1365–1371.

    Article  Google Scholar 

  10. L. H. Han, Z. G. Luo, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. I-ron Steel Res. Int. 22 (2015) No. 4, 304–310.

    Article  Google Scholar 

  11. Q. F. Hou, K.J. Dong, A. B. Yu, Powder Technol. 256 (2014) 529–539.

    Article  Google Scholar 

  12. K. Uchida, K. Okamoto, Powder Technol. 187 (2008) 138–145.

    Article  Google Scholar 

  13. J. J. Dai, J. R. Grace, Biomass Bioenergy 35 (2011) 942–955.

    Article  Google Scholar 

  14. J. Zhang, Z. W. Yuan, X. L. Wei, Powder Technol. 207 (2011) 348–352.

    Article  Google Scholar 

  15. Y. J. Lee, Powder Technol. 102 (1999) 194–201.

    Article  Google Scholar 

  16. H. Zhou, Z. S. Zou, Z. G. Luo, T. Zhang, Y. You, H. F. Li, Ironmak. Steelmak. 42 (2015) 209–216.

    Article  Google Scholar 

  17. P. A. Cundall, O. D. L. Strack, Geotechnique 29 (1979) 47–65.

    Article  Google Scholar 

  18. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A.B. Yu, Chem. Eng. Sci. 63 (2008) 5728–5770.

    Article  Google Scholar 

  19. Y. Shimizu, P. A. Cundall, J. Eng. Mech. 127 (2001) 864–872.

    Article  Google Scholar 

  20. P. W. Cleary, Eng. Comput. 26 (2009) 698–743.

    Article  Google Scholar 

  21. J. W. Fernandez, P. W. Cleary, W. McBride, Chem. Eng. Sci. 66 (2011) 5585–5601.

    Article  Google Scholar 

  22. M. Y. Kou, S. L. Wu, W. Shen, K. P. Du, L. H. Zhang, J. Sun, ISIJ Int. 53 (2013) 2080–2089.

    Article  Google Scholar 

  23. Z. G. Luo, H. Zhou, T. Zhang, Y. You, L. H. Han, H. F. Li, Z. S. Zou, J. Iron Steel Res. Int. 22 (2015) No. 12, 1098–1106.

    Article  Google Scholar 

  24. Q. F. Hou, M. Samman, J. Li, A. B. Yu, ISIJ Int. 54 (2014) 1772–1780.

    Article  Google Scholar 

  25. H. Zhou, Z. G. Luo, T. Zhang, Y. You, Z. S. Zou, Ironmak. Steelmak. 42 (2015) 774–784.

    Article  Google Scholar 

  26. H. Zhou, Z. G. Luo, Z. S. Zou, T. Zhang, Y. You, Steel Res. Int. 86 (2015) 1073–1081.

    Article  Google Scholar 

  27. Y. W. Yu, H. Saxén, Chem. Eng. Sci. 65 (2010) 5237–5250.

    Article  Google Scholar 

  28. Y. W. Yu, A. Westerlund, T. Paananen, H. Saxén, ISIJ Int. 51 (2011) 1050–1056.

    Article  Google Scholar 

  29. A. W. Roherts, A. H. Willis, Proc. Inst. Mech. Eng. London 197 (1962) 67–73.

    Google Scholar 

  30. A. W. Roberts, Bulk Solids Handling 22 (2002) 436–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhou.

Additional information

Foundation Item: Item Sponsored by National Key Technology Research and Development Program during 12th Five-year Plan of China (2011BAE04B02); National Natural Science Foundation of China (51174053)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hf., Zhou, H., Zhang, T. et al. Influence of Screw Design on Burden Descending Velocity and Particle Segregation in COREX Shaft Furnace. J. Iron Steel Res. Int. 23, 516–524 (2016). https://doi.org/10.1016/S1006-706X(16)30082-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30082-6

Key words

Navigation