Skip to main content
Log in

Strain-induced precipitation in Ti micro-alloyed interstitial-free steel

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Stress relaxation method was carried out on a Ti micro-alloyed interstitial-free (IF) steel at the temperature ranging from 800 to 1000 °C. The results show that the softening kinetics curves of deformed austenite can be divided into three stages. At the first stage, the stress has a sharp drop due to the onset of recrystallization. At the second stage, a plateau appears on the relaxation curves indicating the start and finish of strain-induced precipitation. At the third stage, the stress curves begin to descend again because of coarsening of precipitates. Precipitation-time-temperature (PTT) diagram exhibited a “C” shape, and the nose point of the PTT diagram is located at 900 °C and the start precipitation time of 10 s. The theoretical calculation shows that the strain-induced precipitates were confirmed as almost pure TiC particles. The TiC precipitates were heterogeneously distributed in either a chain-like or cell-like manner observed by transmission electron microscopy (TEM), which indicates the precipitates nucleated on dislocations or dislocation substructures. In addition, a thermodynamic analytical model was presented to describe the precipitation in Ti micro-alloyed IF steel, which shows a good agreement between the experimental observation and the predictions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Q. Feng, F. M. Wang, S. F. Tao, D. Q. Zhao, X. Y. Zhang, J. Iron Steel Res. Int. 20 (2013) No. 5, 42–49.

    Article  Google Scholar 

  2. Y. Z. Shen, K. H. Oh, D. N. Lee, Mater. Sci. Eng. A 434 (2006) 314–318.

    Article  Google Scholar 

  3. A. K. Gupta, D. R. Kumar, J. Mater. Process. Technol. 172 (2006) 225–237.

    Article  Google Scholar 

  4. W. M. Guo, Z. C. Wang, S. Liu, J. Iron Steel Res. Int. 18 (2011) No. 5, 42–46.

    Article  Google Scholar 

  5. Y. Liu, C. Wang, Q. Jiang, J. Mater. Sci. Technol. 23 (2007) 689–692.

    Google Scholar 

  6. B. Hutchinson, D. Artymowicz, ISIJ Int. 41 (2001) 533–541.

    Article  Google Scholar 

  7. R. Rana, W. Bleck, S. B. Singh, Steel Res. Int. 78 (2007) 612–621.

    Article  Google Scholar 

  8. Z. D. Wang, Y. H. Guo, Zh. Zhao, X. H. Liu, G. D. Wang, J. Iron Steel Res. Int. 13 (2006) No. 6, 60–65.

    Article  Google Scholar 

  9. Y. D. Liu, Y. D. Zhang, Y. Ren, T. Albert, L. Zuo, J. Iron Steel Res. Int. 20 (2013) No. 5, 38–41.

    Article  Google Scholar 

  10. J. J. Yang, L. X. Fan, J. Jia, R. Wun, L. Song, L. L. Jiang, J. Iron Steel Res. Int. 20 (2013) No. 12, 47–52.

    Article  Google Scholar 

  11. Y. W. Wei, N. Li, X. X. Chen, T. S. Hu, J. P. Rao, X. L. Tao, J. Iron Steel Res. Int. 15 (2008) No. 3, 92–94.

    Article  Google Scholar 

  12. X. L. Song, K. Peng, Z. X. Yuan, J. Jia, J. Liu, L. X. Fan, J. Iron Steel Res. Int. 21 (2014) 844–848.

    Article  Google Scholar 

  13. R. Narayanasamy, N. L. Parthasarathi, R. Aravindan, J. Iron Steel Res. Int. 15 (2008) No. 5, 56–60.

    Article  Google Scholar 

  14. M. Wang, Y. P. Bao, H. Cui, ISIJ Int. 50 (2010) 1606–1611.

    Article  Google Scholar 

  15. Y. L. Zhang, Y. Y. Zhang, F. H. Yang, Z. T. Zhang, J. Iron Steel Res. Int. 20 (2013) No. 3, 39–44.

    Article  Google Scholar 

  16. H. Bevis, A. Dorota, ISIJ Int. 41 (2001) 533–541.

    Article  Google Scholar 

  17. Y. Hayakawa, J. A. Szpunar, Acta Mater. 45 (1997) 2425–2434.

    Article  Google Scholar 

  18. Y. L. Chen, L. Su, A. M. Zhao, Z. Kual, B. H. Li, G. M. Liu, J. Iron Steel Res. Int. 20 (2013) No. 6, 75–81.

    Article  Google Scholar 

  19. R. Narayanasamy, C. S. Narayanan, Mater. Des. 29 (2008) 1467–1475.

    Article  Google Scholar 

  20. K. Eloot, K. Okuda, K. Sakata, ISIJ Int. 38 (1998) 602–609.

    Article  Google Scholar 

  21. B. H. Hu, Q. W. Cai, H. B. Wu, J. Iron Steel Res. Int. 20 (2013) No. 7, 69–77.

    Article  Google Scholar 

  22. X. G. Zhou, Z. Y. Liu, X. Q. Yuan, D. Wu, G. D. Wang, X. H. Liu, J. Iron Steel Res. Int. 15 (2008) No. 3, 65–69.

    Article  Google Scholar 

  23. Q. L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  24. H. L. Yi, L. X. Du, G. D. Wang, X. H. Liu, J. Iron Steel Res. Int. 16 (2009) No. 4, 72–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-jun Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Yj., Yu, Y., Wang, L. et al. Strain-induced precipitation in Ti micro-alloyed interstitial-free steel. J. Iron Steel Res. Int. 23, 385–392 (2016). https://doi.org/10.1016/S1006-706X(16)30061-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30061-9

Key words

Navigation