Skip to main content
Log in

On the numerical simulations of vortical cavitating flows around various hydrofoils

  • Special Column on Cavitating (Guest Editor Hua Liu)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper reviews the numerical models of various cavitating flows around hydrofoils. Numerical models relating to cavitation flows, including mass transfer models and turbulence models, are summarized at first. Then numerical results and analysis of flow characteristics for the cavitating flows around twisted hydrofoils, truncated hydrofoil and tip leakage are discussed respectively. For mean flow fields, Reynolds averaged Navier-Stokes (RANS) simulation associated with a kind of nonlinear turbulence model is found to be an economic and robust numerical approach for different kinds of cavitating flows including cloud cavitation, tip cavitation and tip leakage cavitation. To predict the fluctuations of pressure and velocity, large eddy simulation (LES) and detached eddy simulation (DES) are two effective approaches. Finally, a few open questions are proposed for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang L. X., Zhang N., Peng X. X. et al. A review of studies of mechanism and prediction of tip vortex cavitation inception [J]. Journal of Hydrodynamics, 2015, 27 (4): 488–495.

    Article  Google Scholar 

  2. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28 (3): 335–358.

    Article  Google Scholar 

  3. Roache P. J. Verification and validation in computational science and engineering [M]. Albuquerque, New Mexico, USA: Hermosa Publishers, 1998.

    Google Scholar 

  4. Eca L., Hoekstra M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies [J]. Journal of Computational Physics, 2014, 262: 104–130.

    Article  MathSciNet  Google Scholar 

  5. Stern F., Wilson R., Shao J. Quantitative V&V of CFD simulations and certification of CFD codes [J]. International Journal for Numerical Methods in Fluids, 2006, 50 (11): 1335–1355.

    Article  Google Scholar 

  6. Zhang Z. R. Verification and validation for RANS simulation of KCS container ship without/with propeller [J]. Journal of Hydrodynamics, 2010, 22 (5Suppl.): 932–939.

    Article  Google Scholar 

  7. Zou L., Larsson L., Orych M. Verification and validation of CFD predictions for a manoeuvring tanker [J]. Journal of Hydrodynamics, 2010, 22 (5Suppl.): 438–445.

    Article  Google Scholar 

  8. AIAA. Guide for the verification and validation of computational fluid dynamics simulations [R]. Reston, VA, USA: American Institute of Aeronautics and Astronautics, 1998, AIAA-G-077-1998.

    Google Scholar 

  9. Oberkampf W. L., Trucano T. G. Verification and validation in computational fluid dynamics [J]. Progress in Aerospace Sciences, 2002, 38: 209–272.

    Article  Google Scholar 

  10. Roache P. J. Criticisms of the correction factor verification method [J]. Journal of Fluids Engineering, 2003, 125 (4): 732–733.

    Article  Google Scholar 

  11. Xing T., Stern F. Comment on “A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies” (L. Eca and M. Hoekastra, Journal of Computational Physics 262(2014)104–130) [J]. Journal of Computational Physics, 2015, 301: 484–486.

    Article  MathSciNet  Google Scholar 

  12. Eca L., Hoekstra M. Reply to comment on “A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies” (L. Eca and M. Hoekastra, Journal of Computational Physics 262(2014)104–130) [J]. Journal of Computational Physics, 2015, 301: 487–488.

    Article  MathSciNet  Google Scholar 

  13. Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics, 2017, 29 (4): 610–620.

    Article  Google Scholar 

  14. Morgut M., Nobile E. Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration [J]. International Journal of Rotating Machinery, 2012, 618180.

    Google Scholar 

  15. Liu Z. H., Wang B. L., Peng X. X. et al. Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear κ-ε turbulence model [J]. Journal of Hydrodynamics, 2016, 28 (2): 227–237.

    Article  Google Scholar 

  16. Chen Y., Chen X., Li J. et al. Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil [J]. Ocean Engineering, 2017, 129: 1–19.

    Article  Google Scholar 

  17. Goncalvès E., Charrière B. Modeling for isothermal cavitation with a four-equation model [J]. International Journal of Multiphase Flow, 2014, 59: 54–72.

    Article  Google Scholar 

  18. Ha C. T., Park W. G. Evaluation of a new scaling term in preconditioning schemes for computations of compressible cavitating and ventilated flows [J]. Ocean Engineering, 2016, 126: 432–466.

    Article  Google Scholar 

  19. Kunz R. F., Boger D. A., Stinebring D. R. et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction [J]. Computers and Fluids, 2000, 29 (8): 849–875.

    Article  Google Scholar 

  20. Merkle C. L., Feng J., Buelow P. E. O. Computational modeling of the dynamics of sheet cavitation [C]. Proceedings of the 3rd International Symposium on Cavitation. Grenoble, France, 1998.

    Google Scholar 

  21. Inanc S., Shy W. Interfacial dynamics-based modeling of turbulent cavitating flows, Part-I: Model development and steady-state computations [J]. International Journal for Numerical Methods in Fluids, 2004, 44 (9): 975–995.

    Article  Google Scholar 

  22. Sinhal A. K., Athavale M. M., Li H. et al. Mathematical basis and validation of the full cavitation model [J]. Journal of Fluids Engineering, 2002, 124 (3): 617–624.

    Article  Google Scholar 

  23. Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics [C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    Google Scholar 

  24. Schnerr G. H., Sauer J. Physical and numerical modeling of unsteady cavitation dynamics [C]. Proceeding of the 4th International Conference on Multiphase Flow. New Orleans, La, USA, 2001.

    Google Scholar 

  25. Zhang L. X., Yin Q., Shao X. M. Theoretical and numerical studies on the bubble collapse in water [J]. Chinese Journal of Hydrodynamics, 2012, 27 (1): 68–73 (in Chinese).

    Google Scholar 

  26. Chen Y., Lu C. J., Chen X. et al. Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capture method of multiphase flow approach [J]. Journal of Hydrodynamics, 2017, 29 (3): 485–494.

    Article  Google Scholar 

  27. Morgut M., Nobile E., Bilus I. Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil [J]. International Journal of Multiphase Flow, 2011, 37 (6): 620–626.

    Article  Google Scholar 

  28. Salvatore F., Streckwall H., van Terwisga T. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop [C]. First International Symposium on Marine Propulsors. Trondheim, Norway, 2009.

    Google Scholar 

  29. Liu D. C., Zhou W. X. Numerical predictions of the propeller cavitation behind ship and comparison with experiment [J]. Journal of Ship Mechanics, 2016, 20 (3): 233–242.

    Google Scholar 

  30. Goncalvès E. Modeling for non-isothermal cavitation using 4-equation models [J]. International Journal of Heat and Mass Transfer, 2014, 76: 247–262.

    Article  Google Scholar 

  31. Zhang Y., Luo X., Ji B. et al. A thermodynamic cavitation model for cavitating flow simulation in a wide range of water temperatures [J]. Chinese Physics Letters, 2010, 27(1): 016401

    Article  Google Scholar 

  32. Girimaji S., Abdol-Hamid K. S. Partially averaged Navier Stokes model for turbulence: Implementation and validation [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005.

    Google Scholar 

  33. Huang B., Wang G. Y. Partially averaged Navier Stokes method for time-dependent turbulent cavitating flows [J]. Journal Hydrodynamics, 2011, 23 (1): 26–33.

    Article  Google Scholar 

  34. Ji B., Luo X. W., Wu Y. L. et al. Partially-averaged Navier-Stokes method with modified κ-ε model for cavitating flow around a marine propeller in a nonuniform wake [J]. International Journal of Heat and Mass Transfer, 2012, 55 (23): 6582–6588.

    Article  Google Scholar 

  35. Lakshmipathy S. Partially averaged Navier-Stokes method for turbulence closures: characterization of fluctuations and extension to wall bounded flows [D]. Doctoral Thesis, 2009, College Station, USA: Texas A&M University.

    Google Scholar 

  36. Coutier-Delgosha O., Fortes-Patella R., Reboud J. L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J]. Journal of Fluids Engineering, 2003, 125 (1): 38–45.

    Article  Google Scholar 

  37. Chen Y., Lu C. J., Wu L. Modelling and computation of unsteady turbulent cavitation flows [J]. Journal of Hydrodynamics, 2006, 18 (5): 559–566.

    Article  Google Scholar 

  38. Wang Y. Y., Wang B. L., Liu H. Numerical simulation of sheet cavity shedding and cloud cavitation on a 2D hydrofoil [J]. Chinese Journal of Hydrodynamics, 2014, 29 (2): 175–182 (in Chinese).

    Google Scholar 

  39. Kjeldsen M., Arndt R. E. A., Effertz M. Spectral characteristics of sheet/cloud cavitation [J]. Journal of Fluids Engineering, 2000, 122 (3): 481–487.

    Article  Google Scholar 

  40. Arndt R. E. A. Some remarks on hydrofoil cavitation [J]. Journal of Hydrodynamics, 2012, 24 (3): 305–314.

    Article  Google Scholar 

  41. Frank T., Lifante C., Jebauer S. et al. CFD simulation of cloud and tip vortex cavitation on hydrofoils [C]. 6th International Conference on Multiphase Flow ICMF. Leipzig, Germany, 2007.

    Google Scholar 

  42. Foeth E. J., Van Doorne C. W. H., Van Terwisga T. et al. Time resolved PIV and flow visualization of 3D sheet cavitation [J]. Experiments in Fluids, 2006, 40 (4): 503–513.

    Article  Google Scholar 

  43. Schnerr G. H., Sezal I. H., Schmidt S. Numerical investigation of three-dimensional cloudy cavitation with special emphasis on collapse induced shock dynamics [J]. Physics of Fluids, 2008, 20(4): 040703.

    Article  Google Scholar 

  44. Ji B., Luo X. W., Peng X. X. et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25 (4): 510–519.

    Article  Google Scholar 

  45. Bailey S. C. C., Tauvolaris S., Lee B. H. K. Effects of free-stream turbulence on wing-tip vortex formation and near field [J]. Journal of Aircraft, 2006, 43 (5): 1282–1291.

    Article  Google Scholar 

  46. Arndt R. E. A., Arakeri V. H., Higuchi H. Some observations of tip-vortex cavitation [J]. Journal of Fluid Mechanics, 1991, 229: 269–289.

    Article  Google Scholar 

  47. Brewer W. H. On simulating tip-leakage vortex flow to study the nature of cavitation inception [D]. Doctoral Thesis, Starkville USA: Mississippi State University, 2002.

    Google Scholar 

  48. Christopher J. C., Stuart D. J. Tip-vortex induced cavitation on a ducted propulsor [C]. 4th ASME-JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA, 2003.

    Google Scholar 

  49. Chow J. S., Zilliac G. G., Bradshaw P. Mean and turbulence measurements in the near field of a wingtip vortex [J]. AIAA Journal, 1997, 35 (10): 1561–1567.

    Article  Google Scholar 

  50. Arndt R. E. A. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2003, 34 (1): 143–175.

    Article  MathSciNet  Google Scholar 

  51. Bindon J. P. The measurement and formation of tip clearance loss [J]. Journal of Turbomachinery, 1989, 111(3): 257–263

    Article  Google Scholar 

  52. Farrell K. J., Biller M. L. A correlation of leakage vortex cavitation in axial-flow pumps [J]. Journal of Fluids Engineering, 1994, 116 (3): 551–557.

    Article  Google Scholar 

  53. Boulon O., Callenaere M., Franc J. P. et al. An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil [J]. Journal Fluid Mechanics, 1999, 390: 1–23.

    Article  Google Scholar 

  54. Gopalan S., Katz J., Liu H. L. Effect of gap size on tip leakage cavitation inception, associated noise and flow structure [J]. Journal of Fluids Engineering, 2002, 124 (4): 994–1004.

    Article  Google Scholar 

  55. Chesnakas C. J., Jessup S. D. Tip-vortex induced cavitation on a ducked propulsor [C]. Proceedings of ASME FEDSM’03, 4th ASME JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA, 2003.

    Google Scholar 

  56. Oweis G. F., Fry D., Chesnakas C. J. et al. Development of a tip-leakage flow–Part 1: The flow over a range of Reynolds numbers [J]. Journal of Fluids Engineering, 2006, 128 (4): 751–764.

    Article  Google Scholar 

  57. Oweis G. F, Fry D., Chesnakas C. J. et al. Development of a tip-leakage flow–Part 2: Comparison between the ducted and un-ducted rotor [J]. Journal of Fluids Engineering, 2006, 128 (4): 765–773.

    Article  Google Scholar 

  58. Wu H., Miorini R. L., Katz J. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump [J]. Experiments in Fluids, 2011, 50 (4): 989–1003.

    Article  Google Scholar 

  59. Wu H., Tan D., Miorini R. L. et al. Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade [J]. Experiments in Fluids, 2011, 51 (6): 1721–1737.

    Article  Google Scholar 

  60. Wu H., Miorini R. L., Tan D. et al. Turbulence within the tip-leakage vortex of an axial waterjet pump [J]. AIAA Journal, 2012, 50 (11): 2574–2587.

    Article  Google Scholar 

  61. Miorini R. L., Wu H., Katz J. The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump [J]. Journal of Turbomachinery, 2012, 134 (3): 403–419.

    Article  Google Scholar 

  62. Zhang D., Shi W., Pan D. et al. Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanism in an axial flow pump [J]. Journal of Fluids Engineering, 2015, 137 (12): 815–816.

    Article  Google Scholar 

  63. Chen G. T., Gretzer E. M., Tan C. S. et al. Similarity analysis of compressor tip clearance flow structure [J]. Journal of Turbomachinery, 1991, 113 (2): 260–269.

    Article  Google Scholar 

  64. Dreyer M., Decaix J., Munch-Alligne C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55 (11): 1–13.

    Article  Google Scholar 

  65. Liu Z. H., Wang B. L. RANS simulations of tip leakage vortex cavitation flows around NACA0009 hydrofoil [C]. Fifth International Symposium on Marine Propulsors smp′17. Espoo, Finland, 2017.

    Google Scholar 

  66. Decaix J., Balarac G., Dreyer M. et al. RANS and LES computations of the tip leakage vortex for different gap widths [J]. Journal of Turbulence, 2015, 16 (4): 309–341.

    Article  Google Scholar 

  67. Josserand C., Rossi M. The merging of two co-rotating vortices: A numerical study [J]. European Journal of Mechanics B/Fluids, 2007, 26 (6): 779–794.

    Article  MathSciNet  Google Scholar 

  68. Delbende I., Piton B., Rossi M. Merging of two helical vortices [J]. European Journal of Mechanics B/Fluids, 2015, 49: 363–372.

    Article  MathSciNet  Google Scholar 

  69. Zhang D., Shi W., Esch B. P. M. et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump [J]. Computers and Fluids, 2015, 112 (1): 61–71.

    Article  Google Scholar 

  70. Hah C. Effects of double-leakage tip clearance flow on the performance of a compressor stage with a large rotor tip gap [J]. Journal of Turbomachinery, 2017, 139(6): 061006.

    Article  Google Scholar 

  71. Peng X. X., Ji B., Cao Y. T. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]. International Journal of Multiphase Flow, 2016, 79: 10–22.

    Article  Google Scholar 

  72. Wan C., Wang B., Wang Q. et al. Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows [J]. Journal of Fluid Engineering, 2017, 139(3): 031303.

    Article  Google Scholar 

  73. Fuster D., Colonius T. Modelling bubble clusters in compressible liquids [J]. Journal Fluid Mechanics, 2011, 688: 352–389.

    Article  MathSciNet  Google Scholar 

  74. Chahine G. L., Hsiao C. T., Raju R. Scaling of cavitation bubble cloud dynamics on propellers [M]. Chapter 15 in Advanced experimental and numerical techniques for cavitation erosion prediction. Dordrecht, The Netherlands: Springer, 2014.

    Google Scholar 

  75. Zhang L., Chen L., Shao X. The migration and growth of nuclei in an ideal vortex flow [J]. Physics of Fluids, 2016, 28(12): 123305.

    Article  Google Scholar 

  76. Fox R. O. Large-eddy-simulation tools for multiphase flows [J]. Annual Review of Fluid Mechanics, 2012, 44 (1): 47–76.

    Article  MathSciNet  Google Scholar 

  77. Erney R. W. Verification and validation of single phase and cavitating flows using an open source CFD tool [D]. Master Thesis, University Park, USA: Pennsylvania State University, 2008.

    Google Scholar 

  78. Xing T. A general framework for verification and validation of large eddy simulations [J]. Journal of Hydrodynamics, 2015, 27 (2): 163–175.

    Article  Google Scholar 

  79. Dhotre M. T., Deen N. G., Niceno B. et al. Large eddy simulation for dispersed bubbly flows: A review [J]. International Journal of Chemical Engineering, 2013, 343276.

    Google Scholar 

  80. Pennings P. C., Westerweel J., van Terwisga T. J. C. Flow field measurement around vortex cavitation [J]. Experiments in Fluids, 2015, 56 (11): 206.

    Article  Google Scholar 

  81. Peng X. X., Wang B. L., Li H. Y. et al. Generation of abnormal acoustic noise: Singing of a cavitating tip vortex [J]. Physical Review Fluids, 2017, 2(5): 053602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-long Wang  (王本龙).

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11772195), the Key Project of National Natural Science Foundation of China (Grant No. 11332009).

Biography: Ben-long Wang (1977-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Bl., Liu, Zh., Li, Hy. et al. On the numerical simulations of vortical cavitating flows around various hydrofoils. J Hydrodyn 29, 926–938 (2017). https://doi.org/10.1016/S1001-6058(16)60807-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60807-7

Key words

Navigation