Skip to main content
Log in

Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, we apply a scaling analysis of the maximum of the probability density function (pdf) of velocity increments, i.e., \({p_{\max }}\left( \tau \right) = {\max _{\Delta {u_\tau }}}p\left( {\Delta {u_\tau }} \right) \sim {\tau ^{ - \alpha }}\), for a velocity field of turbulent Rayleigh-Bénard convection obtained at the Taylor-microscale Reynolds number Reλ ≈ 60. The scaling exponent α is comparable with that of the first-order velocity structure function, ζ(1), in which the large-scale effect might be constrained, showing the background fluctuations of the velocity field. It is found that the integral time T(x/D) scales as T(x/D) ~ (x/D)β, with a scaling exponent β = 0.25 ± 0.01, suggesting the large-scale inhomo-geneity of the flow. Moreover, the pdf scaling exponent α(x, z) is strongly inhomogeneous in the x (horizontal) direction. The vertical-direction-averaged pdf scaling exponent \(\tilde \alpha \left( x \right)\) obeys a logarithm law with respect to x, the distance from the cell sidewall, with a scaling exponent ξ ≈ 0.22 within the velocity boundary layer and ξ ≈ 0.28 near the cell sidewall. In the cell’s central region, α(x, z) fluctuates around 0.37, which agrees well with ζ(1) obtained in high-Reynolds-number turbulent flows, implying the same intermittent correction. Moreover, the length of the inertial range represented in decade \({{\tilde T}_I}\left( x \right)\) is found to be linearly increasing with the wall distance x with an exponent 0.65 ± 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KOLMOGOROV A. N. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers[J]. Doklady Akademii Nauk SSSR, 1941, 30(4): 301–305.

    Google Scholar 

  2. FRISCH U. Turbulence: The legacy of AN Kolmogorov[M]. Cambridge, UK: Cambridge University Press, 1995.

    MATH  Google Scholar 

  3. SHE Z. S., LEVEQUE E. Universal scaling laws in fully developed turbulence[J]. Physical Review Letter, 1994, 72(3): 336–339.

    Article  Google Scholar 

  4. ARNEODO A., BAUDET C. and BENZI R. et al. Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity[J]. Europhysics Letters, 1996, 34(6): 411–416.

    Article  Google Scholar 

  5. SREENIVASAN K., ANTONIA R. The phenomenology of small-scale turbulence[J]. Annual Review Fluid Mechanics, 1997, 39: 435–472.

    Article  MathSciNet  Google Scholar 

  6. LOHSE D., XIA K. Q. Small-scale properties of turbulent Rayleigh-Benard convection[J]. Annual Review Fluid Mechanics, 2010, 42: 335–364.

    Article  Google Scholar 

  7. LASHERMES B., ROUX S. and ABRY P. Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders[J]. European Physical Journal B, 2008, 61(2): 201–215.

    Article  Google Scholar 

  8. KOWAL G., LAZARIAN A. Velocity field of compressible magnetohydrodynamic turbulence: Wavelet decomposition and mode scalings[J]. Astrophysics Journal, 2010, 720: 742–756.

    Article  Google Scholar 

  9. LORD J. W., RAST M. P. and MCKINLAY C. et al. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold[J]. Physics of Fluids, 2012, 24(2): 025102.

    Article  Google Scholar 

  10. HUANG Y. X., SCHMITT F. G. and LU Z. M. et al., An amplitude-frequency study of turbulent scaling intermittency using Hilbert spectral analysis[J]. Europhysics Letters, 2008, 84(4): 40010.

  11. HUANG Y. X. Arbitrary-order hilbert spectral analysis: Definition and application to fully developed turbulence and environmental time series[D]. Doctoral Thesis, Lille, France: University des Sciences et Technologies de Lille and Shanghai, China: Shanghai University, 2009.

    Google Scholar 

  12. HUANG Y. X., SCHMITT F. G. and HERMAND J. P. et al. Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: Comparison study with detrended fluctuation analysis and wavelet leaders[J]. Physical Review E, 2011, 84(1): 016208.

  13. HUANG Y. X., SCHMITT F. G. and ZHOU Q. et al., Scaling of maximum probability density functions of velocity and temperature increments in turbulent systems[J]. Physical of Fluids, 2011, 23(12): 125101.

  14. DAVIDSON P. A., PEARSON B. R. Identifying turbulent energy distribution in real, rather than fourier, space[J]. Physical Review Letters, 2005, 95(21): 214501.

  15. HUANG Y. X., SCHMITT F. G. and LU Z. M. et al., Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis[J]. Journal of Hydrology, 2009, 373(1-2): 103–111.

    Article  Google Scholar 

  16. HUANG Y. X., SCHMITT F. G. and LU Z. M. et al. Second-order structure function in fully developed turbulence[ J]. Physical Review E, 2010, 82(2): 26319.

  17. HUANG Y. X., BIFERALE L. and CALZAVARINI E. et al. Lagrangian single particle turbulent statistics through the Hilbert-Huang transforms[J]. Physical Review E, 2013, 87(4): 041003.

  18. HUANG N. E., SHEN Z. and LONG S. R. A new view of nonlinear water waves: The hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417–457.

    Article  MathSciNet  Google Scholar 

  19. BOLGIANO R. Turbulent spectra in a stably stratified atmosphere[J]. Journal of Geophysical Research, 1959, 64(12): 2226–2229.

    Article  Google Scholar 

  20. OBUKHOV A. M. On the influence of archimedean forces on the structure of the temperature led in a turbulent flow[J]. Doklady Akademii Nauk SSSR, 1959, 125: 1246–1248.

    Google Scholar 

  21. AHLERS G., GROSSMANN S. and LOHSE D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection[J]. Review of Modern Physics, 2009, 81(2): 503–537.

    Article  Google Scholar 

  22. SUN C., ZHOU Q. and XIA K. Q. Cascades of velocity and temperature fluctuations in buoyancy-driven turbulence[ J]. Physical Review Letters, 2006, 97(14): 144504.

  23. ZHOU Q., SUN C. and XIA K. Q. Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence[J]. Journal of Fluid Mechanics, 2008, 598: 361–372.

    Article  Google Scholar 

  24. GASTEUIL Y., SHEW W. and GILBERT M. et al., Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh-Benard convection[J]. Physical Review Letters, 2007, 99(23): 234302.

  25. GROSSMANN S., LOHSE D. Fluctuations in turbulent Rayleigh-Benard convection: The role of plumes[J]. Physics of Fluids, 2004, 16(12): 4462–4472.

    Article  Google Scholar 

  26. BENZI R., TOSCHI F. and TRIPICCIONE R. On the heat transfer in Rayleigh-Benard systems[J]. Journal of Statistical Physics, 1998, 93(8): 901–918.

    Article  MathSciNet  Google Scholar 

  27. CALZAVARINI E., TOSCHI F. and TRIPICCIONE R. Evidences of bolgiano-obhukhov scaling in three-dimensional Rayleigh-Benard convection[J]. Physical Review E, 2002, 66(1): 016304.

  28. KUNNEN R., CLERCX H. and GEURTS B. et al. Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Benard convection[J]. Physical Review E, 2008, 77(1): 016302.

  29. ZHOU Q., XIA K. Q. Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection[J]. Physical Review E, 2008, 77(5): 056312.

  30. ZHOU Q., XIA K. Q. Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence[ J]. Journal of Fluid Mechanics, 2011, 684: 192–203.

    Article  Google Scholar 

  31. ZHOU Q., XIA K. Q. Measured instantaneous viscous boundary layer in turbulent Rayleigh-Benard convection[ J]. Physical Review Letters, 2010, 104(10): 104301.

  32. HE G. W., ZHANG J. B. Elliptic model for space-time correlations in turbulent shear flows[J]. Physical Review E, 2006, 73(5): 055303(R).

  33. ZHAO X., HE G. W. Space-time correlations of fluctuating velocities in turbulent shear flows[J]. Physical Review E, 2009, 79(2): 046316.

  34. HE X. Z., HE G. W. and TONG P. Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis[ J]. Physical Review E, 2010, 81(6-2): 065303(R).

  35. HE X. Z., TONG P. Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection[J]. Physical Review E, 2011, 83(3-2): 037302.

  36. HE X. Z., FUNFSCHILLING D. and NOBACH H. et al. Transition to the ultimate state of turbulent Rayleigh-Benard convection[J]. Physical Review Letters, 2012, 108(2): 024502.

  37. BENZI R., CILIBERTO S. and TRIPICCIONE R. et al. Extended self-similarity in turbulent flows[J]. Physical Review E, 1993, 48(1): 29–32.

    Article  Google Scholar 

  38. NI R., HUANG S. D. and XIA K. Q. Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection[J]. Physical Review Letters, 2011, 107(17): 174503.

  39. SHANG X. D., XIA K. Q. Scaling of the velocity power spectra in turbulent thermal convection[J]. Physical Review E, 2001, 64(6): 065301.

  40. ZHOU Q., LI C. M. and LU Z. M. et al. Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Benard convection[ J]. Journal of Fluid Mechanics, 2011, 683: 94–111.

    Article  Google Scholar 

  41. WOOD A., CHAN G. Simulation of stationary Gaussian processes in [0, 1] d[J]. Journal of Computational and Graphical Statistics, 1994, 3(4): 409–432

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhou  (周全).

Additional information

Project supported by the Natural Science Foundation of China (Grant Nos. 11102114, 11202122 and 11222222), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ008, 13YZ124), the Shanghai Shuguang Project (Grant No. 13SG40), and the Program for New Century Excellent Talents in University (Grant No. NCET-13-0).

Biography: QIU Xiang (1978-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Huang, Yx., Zhou, Q. et al. Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection. J Hydrodyn 26, 351–362 (2014). https://doi.org/10.1016/S1001-6058(14)60040-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60040-8

Key words

Navigation