Skip to main content
Log in

Experimental Analysis and Damage Modeling of High-Density Polyethylene under Fatigue Loading

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this study, an experimental analysis for determining the fatigue strength of HDPE-100 under cyclic loading is presented. The curve of cumulative fatigue damage versus number of cycles (D-N)was deduced from stiffness degradation. Based on the three stage damage trend, the remaining fatigue life is numerically predicted by considering a double term power damage accumulation model. This model is found to be accurate, both in modeling the rapid damage growth in the early life and near the end of the fatigue life. Numerical results illustrate that the proposed model is capable of accurately fitting several different sets of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brewin, J. and Chapman, P., Recent developments in the design and manufacture of plastic pipes. Vinidex tube makers PTV limited. Tubemakers PTY Limited, 2000.

  2. Joseph, S.H., Fatigue failure and service lifetimes in PVC pressure pipes. Plastics and Rubber Processing and Applications, 1984, 4: 325–330.

    Google Scholar 

  3. Dowling, N.E., Mechanical behavior of material. Engineering methods for deformation. In: Fracture and Fatigue. USA: Prentice Hall, 1999.

    Google Scholar 

  4. Gardner, A.K., King, K.B and Cooper, J.R., In-Service Care Considerations for High Pressure Vessels in a Commercial Polyethylene Process. Denver, CO, USA, 1981, 48: 151–164.

  5. Anne, S.O., Arild, H.C., Anfrid, D. and Odd, S.H., Behavior of PVC and HDPE under highly triaxial stress states: an experimental and numerical study. Mechanics of Materials, 2014, 72: 94–108.

    Article  Google Scholar 

  6. Anne, S.O., Arild, H.C., Mario, P.L., Ahmed, B., Bumedijen, R. and Odd, S.H., Experimental and numerical study on the behavior of PVC and HDPE in biaxial tension. Mechanics of Materials, 2012, 54: 18–31.

    Article  Google Scholar 

  7. Riadh, E. and Wafa, T., Viscoelastic behavior of HDPE polymer using tensile and compressive loading. Journal of Materials Engineering and Performance, 2005, 15(1): 111–116.

    Google Scholar 

  8. Runt, J. and Jacq, M., Effect of crystalline morphology on fatigue crack-propagation in polyethylene. Journal of Materials Science, 1989, 24(4): 1421–1428.

    Article  Google Scholar 

  9. Nishimura, H. and Narisawa, I., Fatigue behavior of medium-density polyethylene pipes. Polymer Engineering & Science, 1991, 31(6): 399–403.

    Article  Google Scholar 

  10. Strebel, J.J and Moet, A.J., The effects of annealing on fatigue-crack propagation in polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1995, 33(13): 1969–1984.

    Article  Google Scholar 

  11. Lu, x., Qian, R and Brown, N., The effect of crystallinity on fracture and yielding of polyethylenes. Polymer, 1995, 36(22): 4239–4244.

    Article  Google Scholar 

  12. Chen, H., Scavuzzo, R.J and Srivatsan, T.S., Influence of joining on the fatigue and fracture behavior of high density polyethylene pipe. Journal of Materials Engineering and Performance, 1997, 6(4): 473–480.

    Article  Google Scholar 

  13. Niinomi, M., Wang, L., Enjitsu, T and Fukunaga, K., Fatigue characteristics of ultra-high molecular weight polyethylene with different molecular weight for implant material. Journal of Materials Science: Materials in Medicine, 2001, 12(3): 267–272.

    Google Scholar 

  14. Khelif, R., Chateauneuf, A. and Chaoui, K., Statistical analysis of HDPE fatigue lifetime. Meccanica, 2008, 43(6): 567–576.

    Article  Google Scholar 

  15. Berrehili, A., Castagnet, S. and Nadot, Y., Multiaxial fatigue criterion for a high-density polyethylene thermoplastic. Fatigue & Fracture of Engineering Materials, 2010, 33(6): 345–357.

    Article  Google Scholar 

  16. Gonzalez, M., Machado, R. and Gonzalez, J., Fatigue analysis of PE-100 pipe under axial loading. In: ASME 2011 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2011: 905–911.

  17. Zok, F. and Shinozaki, D.M., Dilatational damage accumulation during fatigue of polypropylene. Journal of Materials Science, 1987, 22(11): 3995–4001.

    Article  Google Scholar 

  18. Bhattacharya, S.K. and Brown, N., Micromechanisms of crack initiation in thin-films and thick sections of polyethylene. Journal of Materials Science, 1984, 19(8): 2519–2532.

    Article  Google Scholar 

  19. Bucknall, C.B. and Dumpleton, P., Fatigue crack-growth in polyethylene. Polymer Engineering and Science, 1985, 25: 313–317.

    Article  Google Scholar 

  20. Kuksenko, V.S., Nucleation of submicroscopic cracks in stressed solids. International Journal of Fracture, 1975, 11(5): 829–840.

    Article  Google Scholar 

  21. Castagnet, S., Girault, S., Gacougnolle, J. and Dang, P., Cavitations in strained polyvinylidene fluoride: Mechanical and X Ray experimental studies. Polymer, 2000, 41(20): 7523–7530.

    Article  Google Scholar 

  22. Mourglia, S.E., Compréhension des mécanismes physiques de fatigue dans le polyamide vierge et renforcé de fibre de verre. Thèse de doctorat, Institut national des sciences appliquées, Lyon, France (in french). N° 2009-ISAL-0090.

  23. Boisot, G., Laiarinandrasana, L., Besson, J., Fond, C. and Hochstetter, G., Experimental investigations and modeling of volume change induced by void growth in polyamide 11. International Journal of Solids and Structures, 2011, 48(19): 2642–2654.

    Article  Google Scholar 

  24. May, A., Belouchrani, M.A., Manaa, A. and Bouteghrine, Y., Influence of fatigue damage on the mechanical behaviour of 2024-T3 aluminum alloy. Procedia Engineering, 2011, 10: 798–806.

    Article  Google Scholar 

  25. Talreja, R., Stiffness properties of composite laminates with matrix cracking and interior delamination. Engineering Fracture Mechanics, 1986, 25(5–6): 751–762.

    Article  Google Scholar 

  26. Xinran, X., A coupled damage-plasticity model for energy absorption in composite. International Journal of Damage Mechanics, 2010, 19(6): 727–751.

    Article  Google Scholar 

  27. Celentano, D.J. and Chaboche, J.L., Experimental and numerical characterization of damage evolution in steels. International Journal of Plasticity, 2007, 23(10–11): 1739–1762.

    Article  Google Scholar 

  28. Limin, J., Baozhong, S. and Bohong, G., Cumulative fatigue damage for 3-D angle-interlock woven composite under three-point bending cyclic loading. International Journal of Damage Mechanics, 2012, 22: 3–16.

    Google Scholar 

  29. Lemaitre, J. and Dufailly, J., Damage measurements. Engineering Fracture Mechanics, 1987, 28(5–6): 643–661.

    Article  Google Scholar 

  30. Bonora, N., A non linear CDM model for ductile failure. Engineering Fracture Mechanics, 1997, 58: 11–28.

    Article  Google Scholar 

  31. Armero, F. and Oller, S., A general framework for continuum damage models I: Infinitesimal plastic damage models in stress space. International Journal of Solids and Structures, 2000, 37(48–50): 7409–7436.

    Article  MathSciNet  Google Scholar 

  32. Cherouat, A., Saanouni, K. and Hammi, Y., Improvement of forging process of a 3D complex part with respect to damage occurrence. Journal of Materials Processing Technology, 2003, 142(2): 307–317.

    Article  Google Scholar 

  33. Pirondi, A. and Bonora, N., Modeling ductile damage under fully reversed cycling. Computational Materials Science, 2003, 26: 129–141.

    Article  Google Scholar 

  34. Saanouni, K., Mariage, J.F., Cherouat, A. and Lestriez, P., Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Composite structure, 2004, 82(27): 2309–2332.

    Article  Google Scholar 

  35. Tvergaard, V. and Needleman, A., Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32(1): 157–169.

    Article  Google Scholar 

  36. Kachanov, M. and Montagut, E., Interaction of a crack with certain micro crack arrays. Engineering Fracture Mechanics, 1986, 25: 625–636.

    Article  Google Scholar 

  37. Chaboche, J.L., Continuum damage mechanics 1: General concepts. Journal of Applied Mechanics, Transactions ASME, 1988, 55: 59–64.

    Article  Google Scholar 

  38. Lemaitre, J., Coupled elasto-plasticity and damage constitutive equations. Computer Methods in Applied Mechanics and Engineering, 1985, 51(1–3): 31–49.

    Article  Google Scholar 

  39. Chaboche, J.L. and Lesne, P.M., A non-linear continuous fatigue damage model. Fatigue. Fract. Eng. M., 1988, 11: 1–17.

    Article  Google Scholar 

  40. Mao, H. and Mahadevan, S., Fatigue damage modeling of composite materials. Composite Structure, 2002, 58(4): 405–410.

    Article  Google Scholar 

  41. BS ISO 4437-3., Plastics piping systems for the supply of gaseous fuels. Polyethylene (PE). Fittings, 2014.

  42. Gonzalez, M., Machado, R. and Gonzalez, J., Fatigue analysis of PE-100 pipe under axial loading. In: ASME 2011 Pressure Vessels and Piping Conference, 2011: 905–911.

  43. ASTM D 638., Test Method for Tensile Properties of Plastics. American Society for Testing and Material Standard, 2002.

  44. ASTM D7791-10., Standard Test Method for Uniaxial Fatigue Properties of Plastics. American Society for Testing and Material Standard, 2010.

  45. Hertzberg, R.W., Manson, J.A. and Skibo, M., Frequency Sensitivity of Fatigue Processes in Polymeric Solids. Polymer Engineering & Science, 1975, 15(4): 252–260.

    Article  Google Scholar 

  46. Dupend-Brusselle, N., Lai, D., Feaugas, X., Guigon, M. and Clavel, M., Mechanical Behavior of a Semicrystalline Polymer before Necking. Part I: Characterization of Uniaxial Behavior. Polymer Engineering and Science, 2001, 41(1): 66–76.

    Article  Google Scholar 

  47. Yakimets, I., Dawei, L. and Michele, G., Model to predict the viscoelastic response of a semi-crystalline polymer under complex cyclic mechanical loading and unloading conditions. Mechanics of Time-Dependent Materials, 2007, 11(1): 47–60.

    Article  Google Scholar 

  48. Elleuch, R. and Taktak, W., Viscoelastic behavior of HDPE polymer using tensile and compressive loading. Journal of Materials Engineering and Performance, 2006, 15(1): 111–116.

    Article  Google Scholar 

  49. Aid, A., Amrouche, A., Bachir Bouiadjra, B., Benguediab, M. and Mesmacque, G., Fatigue life prediction under variable loading based on a new damage model. Materials & Design, 2011, 32(1): 183–191.

    Article  Google Scholar 

  50. Djebli, A., Aid, A., Bendouba, M., Amrouche, A., Benguediab, M. and Benseddiq, N., A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. International Journal of Non-Linear Mechanics, 2013, 51: 145–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bendouba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djebli, A., Bendouba, M., Aid, A. et al. Experimental Analysis and Damage Modeling of High-Density Polyethylene under Fatigue Loading. Acta Mech. Solida Sin. 29, 133–144 (2016). https://doi.org/10.1016/S0894-9166(16)30102-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)30102-1

Key Words

Navigation