Skip to main content
Log in

Elemental analysis of hourly collected air filters with X-ray fluorescence under grazing incidence

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The X-ray fluorescence under grazing incidence condition (XRF-UGI) was applied for the direct analysis of aerosol filters. Particulate matter less than 2.5 microns (PM2.5) was collected hourly on polytetrafluoroethylene filters using a continuous PM monitor with a virtual impactor method. Although the sampling mass is in trace amounts of 5–30 μg, the metallic contents, such as V, Cr, Mn, Fe, Zn, and Pb, can be measured at sub-ng m−3 detection limits. The effects of the non-uniformity and poor flatness of the PM filters were discussed with regard to the measurement repeatability. The relationship between the XRF-UGI intensities and the mass concentrations obtained via conventional X-ray fluorescence (XRF) analysis was confirmed using the fundamental parameter method. Finally, quantification was successfully demonstrated using the XRF-UGI results with the relative sensitivity factors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020, KIMOTO ELECTRIC Co., Ltd. b A photography of a PM filter sample. The tape was forward 30 mm every hour and the positions of fine and coarse spots at the same time are two spots apart. c Anan illustration of a sample holder for the filter

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Raw data set is not applicable.

References

  1. A.I. Calvo, C. Alves, A. Castro, V. Pont, A.M. Vicente, R. Fraile, Atmos. Res. (2013). https://doi.org/10.1016/j.atmosres.2012.09.02

    Article  Google Scholar 

  2. Ministry of the environment Japan, Air quality / Transportation; https://www.env.go.jp/air/osen/pm/ca/manual.html

  3. https://www.epa.gov/sites/default/files/2019-11/documents/mthd-3-3.pdf

  4. S. Yatkin, H.S. Amin, K. Trzepla, A.M. Dillner, Aerosol Sci. Technol. (2016). https://doi.org/10.1088/1757-899X/1011/1/012058

    Article  Google Scholar 

  5. S. Yatokin, M. Gerboles, A. Borowiak, G. Tanet, V. Pedroni, R. Passarella, F. Lagler, Evaluation of EDXRF for determination of elements in PM10 Filters, EUR 24983 EN (Publication office of the European Union, Luxemburg, 2011), pp.1–81

    Google Scholar 

  6. T. Okuda, E. Fujimori, K. Hotoya, H. Takada, H. Kumata, F. Nakajima, S. Hatakeyama, M. Uchida, S. Tanaka, K. He, Y. Ma, H. Haraguchi, Aerosol. Air Qual. Res. (2013). https://doi.org/10.4209/aaqr.2012.11.0308

    Article  Google Scholar 

  7. T. Moriyama, A. Morikawa, M. Doi, S. Fess, Adv. X-Ray Anal. (2014). https://doi.org/10.1017/S0885715614000207

    Article  Google Scholar 

  8. R. Klockenkamper, A. Von Hohlen, Total-reflection x-ray fluorescence analysis and related method, 2nd edn. (Jon Wiley & Sons Inc, Hoboken, 2015), pp.297–302

    Google Scholar 

  9. K.W. Fomba, N. Deabji, S.E.I. Barcha, I. Ouchen, E.M. Elbaramoussi, R. Cherkaoi, E. Moursli, M. Harnafi, S.E. Hajjaji, A. Mellouki, H. Herrman, Atmos. Measure. Tech. 13, 4773–4790 (2020)

    Article  ADS  CAS  Google Scholar 

  10. S. Seeger, J. Osan, O. Czӧmpӧly, A. Gross, H. Stonach, L. Stabile, M. Ochsennkuehn-Petropoulou, L.A. Tsakanika, T. Lymperopoulou, S. Goddard, M. Fiebig, F. Gaie-Levrel, Y. Kayster, B. Beckhoff, Atmosphere (2021). https://doi.org/10.3390/atmos12030309

    Article  Google Scholar 

  11. I. Durukan, S. Bektas, M. Dogan, U. Fittschen, E3S Web Conf. 1, 200006 (2013). https://doi.org/10.1051/e3sconf/20130120006

    Article  CAS  Google Scholar 

  12. T. Matsuyama, H. Yamaguchi, K. Tsuji, J. Anal. At. Spectrom. (2021). https://doi.org/10.1039/D1JA00164G

    Article  Google Scholar 

  13. L. Borgese, F. Bilo, A. Zacco, S. Federici, A.W. Mutahi, E. Bontempi, K. Trzepla, N. Hyslop, S. Yatkin, P. Wobrauschek, J. Prost, D. Ingerle, L.E. Depero, Spectrochm. Acta B (2020). https://doi.org/10.1016/j.sab.2020.105840

    Article  Google Scholar 

  14. L. Borgese, A. Zacco, S. Pal, E. Bontempi, R. Lucchini, N. Zimmerman, L.E. Depero, Talanta (2011). https://doi.org/10.1016/j.talanta.2010.12.048

    Article  PubMed  PubMed Central  Google Scholar 

  15. F. Bilo, L. Borgese, A. Wambui, A. Assi, A. Zacco, S. Federici, D. Eichert, K. Tsuji, R. Lucchini, D. Placidi, E. Bontempi, L.E. Depero, J. Aerosol Sci. (2018). https://doi.org/10.1016/j.jaerosci.2018.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  16. D.K.G. De Boer, Phys. Rev. B (1991). https://doi.org/10.1103/PhysRevB.44.498

    Article  Google Scholar 

  17. R. Unterumsberger, B. Pollakowski, M. Müller, B. Beckhoff, Anal. Chem. (2011). https://doi.org/10.1021/ac202074s

    Article  PubMed  Google Scholar 

  18. T. Yamada, H. Takahara, A. Ohbuchi, W. Matsuda, Y. Shimizu, Spectrochim. Acta B (2018). https://doi.org/10.1016/j.sab.2018.08.013

    Article  Google Scholar 

  19. F.K. Duan, K.B. He, Y.L. Ma, T. Ihozaki, H. Kawasaki, R. Arakawa, S. Kitayama, K. Tsujimoto, T. Kimoto, H. Furutani, M. Toyoda, Environ. Poll (2016). https://doi.org/10.1016/j.envpol.2016.07.004

    Article  Google Scholar 

  20. A. Ohbuchi, W. Matsuda, H. Takahara, S. Ikeda, Y. Kataoka, K. Fujii, Y. Koike, Adv. X-Ray Anal. 62, 126 (2019)

    Google Scholar 

  21. R.E. Van Grieken, A.A. Markowicz, Handbook of X-ray Spectrometry, 2nd edn. (Marcel Dekker, Inc., New York, 2002), pp.261–262

    Google Scholar 

  22. A. Morikawa, Rigaku J. 30(2), 13–17 (2014)

    Google Scholar 

  23. ISO/TS: 18507 Surface chemical analysis — Use of Total reflection X-ray fluorescence spectroscopy in biological and environmental analysis

  24. ISO 14706 : 2014 Surface chemical analysis — Determination of surface elemental contamination on silicon wafers by total-reflection X-ray fluorescence (TXRF) spectroscopy, Annex B

  25. L. Borgese, F. Bilo, K. Tsuji, R. Fernandez-Ruiz, E. Margui, C. Streli, G. Pepponi, H. Stosnach, T. Yamada, P. Vandenabeele, D.M. Maina, M. Gatari, K.D. Shepherd, E.K. Towett, L. Bennun, G. Custo, C. Vasquez, L.E. Depero, Spectrochim. Acta B (2014). https://doi.org/10.1016/j.sab.2014.06.024

    Article  Google Scholar 

  26. ISO 20289 : 2018 Surface chemical analysis — Total reflection X-ray fluorescence analysis of water

  27. H. Takahara, A. Ohbuchi, K. Murai, Spectrochim. Acta B (2018). https://doi.org/10.1016/j.sab.2018.07.008

    Article  Google Scholar 

  28. R. Klockenkamper, A. Von Hohlen, Total-Reflection X-ray Fluorescence Analysis and Related Method, 2nd edn. (Jon Wiley & Sons Inc, Hoboken, 2015), pp.388–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikari Takahara.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahara, H., Morikawa, A., Kitayama, S. et al. Elemental analysis of hourly collected air filters with X-ray fluorescence under grazing incidence. ANAL. SCI. 40, 519–529 (2024). https://doi.org/10.1007/s44211-023-00483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00483-6

Keywords

Navigation