Skip to main content
Log in

CF-LIBS based elemental analysis of Saussurea simpsoniana medicinal plant: a study on roots, seeds, and leaves

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The plant Saussurea Simpsoniana, which has been used in traditional medicine for its biocompatibility and abundant nutrients, offers a wide range of remedies. Local communities effectively utilize medicines derived from the plant’s roots to treat various ailments such as bronchitis, rheumatic pain, and abdominal and nervous disorders. In this study, we present an elemental analysis of the chemical composition (wt%) of this medicinal plant using the laser-induced breakdown spectroscopy (LIBS) technique. In the air atmosphere, an Nd:YAG (Q-switched) laser operating at a wavelength of 532 nm is utilized to create plasma on the sample’s surface. This laser has a maximum pulse energy of approximately 400 mJ and a pulse duration of 5 ns. A set of six miniature spectrometers, covering the wavelength range of 220–970 nm, was utilized to capture and record the optical emissions emitted by the plasma. The qualitative analysis of LIBS revealed the presence of 13 major and minor elements, including Al, Ba, C, Ca, Fe, H, K, Li, Mg, Na, Si, Sr, and Ti. Quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS), ensuring local thermodynamical equilibrium (LTE) and optically thin plasma condition by considering plasma excitation temperature and electron number density. In addition, a comparison was made between the results obtained from CF-LIBS and those acquired through energy-dispersive X-ray spectroscopy (EDX) analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Naseer, J. Iqbal, A. Naseer, S. Kanwal, I. Hussain, Y. Tan, L. Aguilar-Marcelino, R. Cossio Bayugar, Z. Zajac, Y.A.B. Jardan, T. Mahmood, Saudi J. Biol. Sci. 29(3), 1355 (2022). https://doi.org/10.1016/j.sjbs.2022.01.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. M.S. Sandhyavali, P.S. Sundari, P. Bhavikatti, RGUHS J. Pharm. Sci. 1, 239 (2011). https://doi.org/10.5530/rjps.2011.3.11

    Article  CAS  Google Scholar 

  3. A. Shahbaz, B.A. Abbasi, J. Iqbal, I. Fatima, S.A. Zahra, S. Kanwal, H.P. Devkota, R. Capasso, A. Ahmad, T. Mahmood, Saudi J. Biol. Sci. 28(11), 6086 (2021). https://doi.org/10.1016/j.sjbs.2021.09.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. U. Amara, A. Khan, S. Laraib, R. Wali, U. Sarwar, Q.T. Ain, S. Shakeel, Am. J. Plant Sci. 8(3), 602 (2017). https://doi.org/10.4236/ajps.2017.83041

    Article  CAS  Google Scholar 

  5. R. Noll, C. Fricke-Begemann, M. Brunk, S. Connemann, C. Meinhardt, M. Scharun, V. Sturm, J. Makowe, C. Gehlen, Spectrochim. Acta Part B 93(1), 41 (2014). https://doi.org/10.1016/j.sab.2014.02.001

    Article  ADS  CAS  Google Scholar 

  6. J. Zhang, G. Ma, H. Zhu, J. Xi, Z. Ji, J. Anal. At. Spectrom. 27(11), 1903 (2012). https://doi.org/10.1039/C2JA30160A

    Article  CAS  Google Scholar 

  7. H. Wiggenhauser, D. Schaurich, G. Wilsch, NDT&E Int. 31(4), 307 (1998). https://doi.org/10.1016/S0963-8695(98)00008-5

    Article  CAS  Google Scholar 

  8. R.S. Harmon, F.C. De Lucia, A.W. Miziolek, K.L. McNesby, R.A. Walters, P.D. French, Geochem. Explor. Environ. Anal. 5(1), 21 (2005). https://doi.org/10.1144/1467-7873/03-059

    Article  CAS  Google Scholar 

  9. A. De Giacomo, M. Dell’Aglio, Z. Salajková, E. Vaníčková, D. Mele, P. Dellino, Real-time analysis of the fine particles in volcanic plumes: a pilot study of laser induced breakdown spectroscopy with calibration-free approach (CF-LIBS). J. Volcanol. Geotherm. Res. 432, 107675 (2022)

    Article  Google Scholar 

  10. A. Jabbar, M. Akhtar, S. Mahmood, R. Ahmed, M.A. Baig, Determination of major inorganic nutrients in maize tissues by calibration-free laser induced breakdown spectroscopy. Anal. Lett. 53(8), 1328–1341 (2020)

    Article  CAS  Google Scholar 

  11. Q. Abbas, M.A. Israr, S.U. Haq, A. Nadeem, Exploiting calibration free laser-induced breakdown spectroscopy (CF-LIBS) for the analysis of food colors. Optik 236, 166531 (2021)

    Article  ADS  CAS  Google Scholar 

  12. S. Pandhija, A.K. Rai, In situ multielemental monitoring in coral skeleton by CF-LIBS. Appl. Phys. B 94, 545–552 (2009)

    Article  ADS  CAS  Google Scholar 

  13. J. Yang, X. Li, J. Xu, X. Ma, A calibration-free laser-induced breakdown spectroscopy (CF-LIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature. Appl. Spectrosc. 72(1), 129–140 (2018)

    Article  ADS  PubMed  CAS  Google Scholar 

  14. J.D. Petering, S. Trautner, S. Grünberger, N. Giannakaris, S. Eschlböck-Fuchs, J. Hofstadler, Review of element analysis of industrial materials by in-line laser-induced breakdown spectroscopy (LIBS). Appl. Sci. 11(19), 9274 (2021)

    Article  Google Scholar 

  15. T. Takahashi, B. Thornton, Quantitative methods for compensation of matrix effects and self-absorption in laser induced breakdown spectroscopy signals of solids. Spectrochim. Acta Part B 138, 31–42 (2017)

    Article  ADS  CAS  Google Scholar 

  16. M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 13, 373–377 (2001)

    CAS  Google Scholar 

  17. M.L. Shah, A.K. Pulhani, G.P. Gupta, B.M. Suri, Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy. Appl. Opt. 51(20), 4612–4621 (2012)

    Article  ADS  PubMed  CAS  Google Scholar 

  18. R. Singh, K.K. Chahal, J. Pharm. Phytochem. 7(3), 427 (2018)

    Google Scholar 

  19. K. Zahara, S. Tabassum, S. Sabir, M. Arshad, R. Qureshi, M.S. Amjad, S.K. Chaudhari, Asian Pac J Trop Med 7(1), S60 (2014). https://doi.org/10.1016/S1995-7645(14)60204-2

    Article  Google Scholar 

  20. S. Chen, H. Diekmann, D. Janz, A. Polle, Materials 7(4), 3160 (2014). https://doi.org/10.3390/ma7043160

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. N. Sharma, V.K. Singh, Y. Lee, S. Kumar, P.K. Rai, A.K. Pathak, V.K. Singh, At. Spectrosc. 41(6), 234 (2020). https://doi.org/10.46770/AS.2020.06.003

    Article  CAS  Google Scholar 

  22. Y. Jiang, J. Kang, Y. Wang, Y. Chen, R. Li, Appl. Spectrosc. 73(11), 1284 (2019). https://doi.org/10.1364/AS.73.001284

    Article  PubMed  CAS  Google Scholar 

  23. R.K. Aldakheel, M.A. Gondal, M.M. Nasr, M.A. Dastageer, M.A. Almessiere, Arab. J. Chem. 14(2), 102919 (2021). https://doi.org/10.1016/j.arabjc.2020.102919

    Article  CAS  Google Scholar 

  24. Y. Wang, M. Su, D. Sun, C. Wu, X. Zhang, Q. Lu, C. Dong, Microchem. J. 137, 318 (2018). https://doi.org/10.1016/j.microc.2017.11.011

    Article  CAS  Google Scholar 

  25. N. Ahmed, R. Ahmed, M. Rafiqe, M.A. Baig, Laser Particle Beams 35(1), 1 (2017). https://doi.org/10.1017/s0263034616000732

    Article  CAS  Google Scholar 

  26. N. Ahmed, Z.A. Umar, R. Ahmed, M.A. Baig, Spectrochim. Acta Part B 136(1), 39 (2017). https://doi.org/10.1016/j.sab.2017.08.006

    Article  ADS  CAS  Google Scholar 

  27. Q. Abbass, N. Ahmed, R. Ahmed, M.A. Baig, Plasma Chem. Plasma Process. 36(5), 1287 (2016). https://doi.org/10.1007/s11090-016-9729-y

    Article  CAS  Google Scholar 

  28. A. Fayyaz, U. Liaqat, Z.A. Umar, R. Ahmed, M.A. Baig, Anal. Lett. 52(12), 1951 (2019). https://doi.org/10.1080/00032719.2019.1586914

    Article  CAS  Google Scholar 

  29. J.M. Vadillo, J.J. Laserna, Spectrochim. Acta Part B At. Spectrosc. 59(2), 147 (2004). https://doi.org/10.1016/j.sab.2003.11.006

    Article  ADS  CAS  Google Scholar 

  30. NIST Database. https://physics.nist.gov/PhysRefData/ASD/lines_form.html (2022)

  31. D. Diaz, D.W. Hahn, Plasma chemistry produced during laser ablation of graphite in air, argon, helium and nitrogen. Spectrochim. Acta Part B 166, 105800 (2020)

    Article  CAS  Google Scholar 

  32. S. Lyu, X. Wei, J. Chen, C. Wang, X. Wang, D. Pan, Front. Plant Sci. 8, 597 (2017). https://doi.org/10.3389/fpls.2017.00597

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. F.A. Monteiro, R.C. Nogueirol, L.C.A. Melo, A.G. Artur, F. da Rocha, Commun. Soil Sci. Plant Anal. 42(13), 1510 (2011). https://doi.org/10.1080/00103624.2011.581725

    Article  CAS  Google Scholar 

  34. S. Dresler, M. Wójciak-Kosior, I. Sowa, M. Strzemski, J. Sawicki, J. Kováčik, T. Blicharski, Int. J. Mol. Sci. 19(12), 3864 (2018). https://doi.org/10.3390/ijms19123864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. A. Kabata-Pendias, A.B. Mukherjee, Trace Elements from Soil to Human (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-32714-1

    Book  Google Scholar 

  36. L. Sun, H. Yu, Talanta 79(2), 388 (2009). https://doi.org/10.1016/j.talanta.2009.03.066

    Article  PubMed  CAS  Google Scholar 

  37. A.M. El Sherbini, T.M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Spectrochim. Acta Part B At. Spectrosc. 60(12), 1573 (2005). https://doi.org/10.1016/j.sab.2005.10.011

    Article  ADS  CAS  Google Scholar 

  38. I. Borgia, L.M. Burgio, M. Corsi, R. Fantoni, V. Palleschi, A. Salvetti, M.C. Squarcialupi, E. Tognoni, J. Cult. Herit. 1(1), S281 (2000). https://doi.org/10.1016/S1296-2074(00)00174-6

    Article  Google Scholar 

  39. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, Spectrochim. Acta Part B At. Spectrosc. 56(6), 637 (2001). https://doi.org/10.1016/S0584-8547(01)00214-2

    Article  ADS  Google Scholar 

  40. J.A. Aguilera, C. Aragón, Apparent excitation temperature in laser-induced plasmas. J. Phys. 59, 210 (2007). https://doi.org/10.1088/1742-6596/59/1/046

    Article  CAS  Google Scholar 

  41. M.A. Gigosos, M.Á. González, V. Cardeñoso, Spectrochim. Acta Part B At. Spectrosc. 58(8), 1489 (2003). https://doi.org/10.1016/S0584-8547(03)00097-1

    Article  ADS  CAS  Google Scholar 

  42. B. Praher, V. Palleschi, R. Viskup, J. Heitz, J.D. Pedarnig, Spectrochim. Acta Part B At. Spectrosc. 65(8), 671 (2010). https://doi.org/10.1016/j.sab.2010.03.010

    Article  ADS  CAS  Google Scholar 

  43. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Hoboken, 2013). https://doi.org/10.1002/9781118567371

    Book  Google Scholar 

  44. R.W.P. McWhirter, Chapter 5, in Plasma Diagnostic Techniques. ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965), pp.201–264

    Google Scholar 

  45. D. Díaz, A. Molina, D. Hahn, Effect of laser irradiance and wavelength on the analysis of gold-and silver-bearing minerals with laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 145, 86–95 (2018)

    Article  ADS  Google Scholar 

  46. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Togoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B. 65(1), 86 (2010). https://doi.org/10.1016/j.sab.2009.11.005

    Article  ADS  CAS  Google Scholar 

  47. G. Cristoforetti, E. Tognoni, L.A. Gizzi, Spectrochim Acta Part B. 90(1), 1 (2013). https://doi.org/10.1016/j.sab.2013.09.004

    Article  CAS  Google Scholar 

  48. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc. 53(8), 960 (1999). https://doi.org/10.1366/0003702991947

    Article  ADS  CAS  Google Scholar 

  49. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64(12), 335A (2010). https://doi.org/10.1366/000370210793561691

    Article  ADS  CAS  Google Scholar 

  50. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Müller, U. Panne, I. Gornushkin, Spectrochim. Acta Part B At. Spectrosc. 62(12), 1287 (2007). https://doi.org/10.1016/j.sab.2007.10.005

    Article  ADS  CAS  Google Scholar 

  51. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, Spectrochim. Acta Part B At. Spectrosc. 65(1), 1 (2010). https://doi.org/10.1016/j.sab.2009.11.006

    Article  ADS  CAS  Google Scholar 

  52. T. Takahashi, B. Thornton, K. Ohki, T. Sakka, Spectrochim. Acta Part B At. Spectrosc. 111(1), 8 (2015). https://doi.org/10.1016/j.sab.2015.06.009

    Article  ADS  CAS  Google Scholar 

  53. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012). https://doi.org/10.1366/11-06574

    Article  ADS  PubMed  CAS  Google Scholar 

  54. E. D’Andrea, S. Pagnotta, E. Grifoni, S. Legnaioli, G. Lorenzetti, V. Palleschi, B. Lazzerini, Appl. Phys. B 118(3), 353 (2015). https://doi.org/10.1007/s00340-014-5990-z

    Article  ADS  CAS  Google Scholar 

  55. F. de Oliveira Borges, J.U. Ospina, G. de Holanda Cavalcanti, E.E. Farias, A.A. Rocha, P.I. Ferreira, G.C. Gomes, A. Mello, J. Anal. At. Spectrom. 33(4), 629 (2018). https://doi.org/10.1039/C7JA00299H

    Article  Google Scholar 

  56. Y. Dai, C. Song, X. Gao, A. Chen, Z. Hao, J. Lin, J. Anal. At. Spectrom. 36(8), 1634 (2021). https://doi.org/10.1039/D1JA00082A

    Article  CAS  Google Scholar 

  57. A. Fayyaz, R. Ali, M. Waqas, U. Liaqat, R. Ahmad, Z.A. Umar, M.A. Baig, Analysis of rare earth ores using laser-induced breakdown spectroscopy and laser ablation time-of-flight mass spectrometry. Minerals 13(6), 787 (2023). https://doi.org/10.3390/min13060787

    Article  ADS  CAS  Google Scholar 

  58. J.M. Mermet, Spectrochim. Acta Part B At. Spectrosc. 63(2), 166 (2008). https://doi.org/10.1016/j.sab.2007.11.029

    Article  ADS  CAS  Google Scholar 

  59. R. L. Mahler. University of Idaho College of Agricultural and Life Sciences. CIS, 1124. http://info.ag.uidaho.edu/pdf/CIS/CIS1124 (2008). Accessed 19 Sept 2022

  60. D.I. Arnon, P.R. Stout, Plant Physiol. 14(2), 371 (1939). https://doi.org/10.1104/pp.14.2.371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. I. Pais, Acta Aliment. 21(2), 145 (1992)

    MathSciNet  CAS  Google Scholar 

  62. T.A. Alrebdi, A. Fayyaz, H. Asghar, S. Elaissi, L.A.E. Maati, Molecules 27(15), 5048 (2022). https://doi.org/10.3390/molecules27155048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. A. Fayyaz, U. Liaqat, K. Yaqoob, R. Ahmed, Z.A. Umar, M.A. Baig, Spectrochim. Acta Part B At. Spectrosc. 198, 106562 (2022). https://doi.org/10.1016/j.sab.2022.106562

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Pakistan Academy of Sciences (PAS) and the National Center for Physics (NCP) for the financial assistance to acquire the LIBS setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Fayyaz.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, A., Ali, N., Umar, Z.A. et al. CF-LIBS based elemental analysis of Saussurea simpsoniana medicinal plant: a study on roots, seeds, and leaves. ANAL. SCI. 40, 413–427 (2024). https://doi.org/10.1007/s44211-023-00480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00480-9

Keywords

Navigation