Skip to main content

Advertisement

Log in

Diverse applications and development of aptamer detection technology

  • Review
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Aptamers have received extensive attention in recent years because of their advantages of high specificity, high sensitivity and low immunogenicity. Aptamers can perform almost all functions of antibodies through the combination of spatial structure and target, which are called “chemical antibodies”. At present, aptamers have been widely used in cell imaging, new drug development, disease treatment, microbial detection and other fields. Due to the diversity of modifications, aptamers can be combined with different detection technologies to construct aptasensors. This review focuses on the diversity of aptamers in the field of detection and the development of aptamer-based detection technology and proposes new challenges for aptamers in this field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature (1990). https://doi.org/10.1038/346818a0

    Article  PubMed  Google Scholar 

  2. C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (1990). https://doi.org/10.1126/science.2200121

    Article  PubMed  Google Scholar 

  3. A.D. Ellington, J.W. Szostak, Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature (1992). https://doi.org/10.1038/355850a0

    Article  PubMed  Google Scholar 

  4. T. Hermann, E. Westhof, Non-Watson-Crick base pairs in RNA-protein recognition. Chem. Biol. (1999). https://doi.org/10.1016/s1074-5521(00)80003-4

    Article  PubMed  Google Scholar 

  5. C. Liang, D. Li, G. Zhang, H. Li, N. Shao, Z. Liang, L. Zhang, A. Lu, G. Zhang, Comparison of the methods for generating single-stranded DNA in SELEX. Analyst (2015). https://doi.org/10.1039/c5an00244c

    Article  PubMed  PubMed Central  Google Scholar 

  6. J. Zhou, J. Rossi, Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. (2017). https://doi.org/10.1038/nrd.2016.199

    Article  PubMed  Google Scholar 

  7. E.S. Gragoudas, A.P. Adamis, E.T. Cunningham Jr., M. Feinsod, D.R. Guyer, Group VISiONCT, Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. (2004). https://doi.org/10.1056/NEJMoa042760

    Article  PubMed  Google Scholar 

  8. L. Gryziewicz, Regulatory aspects of drug approval for macular degeneration. Adv. Drug Deliv. Rev. (2005). https://doi.org/10.1016/j.addr.2005.09.009

    Article  PubMed  Google Scholar 

  9. X. Liu, G. Cao, H. Ding, D. Zhang, G. Yang, N. Liu, M. Fan, B. Shen, N. Shao, Screening of functional antidotes of RNA aptamers against bovine thrombin. FEBS Lett. (2004). https://doi.org/10.1016/S0014-5793(04)00197-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. F. He, N. Wen, D. Xiao, J. Yan, H. Xiong, S. Cai, Z. Liu, Y. Liu, Aptamer-based targeted drug delivery systems: current potential and challenges. Curr. Med. Chem. (2020). https://doi.org/10.2174/0929867325666181008142831

    Article  PubMed  Google Scholar 

  11. S.M. Nimjee, R.R. White, R.C. Becker, B.A. Sullenger, Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. (2017). https://doi.org/10.1146/annurev-pharmtox-010716-104558

    Article  PubMed  PubMed Central  Google Scholar 

  12. M.J. Duffy, Role of tumor markers in patients with solid cancers: a critical review. Eur. J. Intern. Med. (2007). https://doi.org/10.1016/j.ejim.2006.12.001

    Article  PubMed  Google Scholar 

  13. F. Zhang, Z. Liu, Y. Han, L. Fan, Y. Guo, Sandwich electrochemical carcinoembryonic antigen aptasensor based on signal amplification of polydopamine functionalized graphene conjugate Pd-Pt nanodendrites. Bioelectrochemistry (2021). https://doi.org/10.1016/j.bioelechem.2021.107947

    Article  PubMed  PubMed Central  Google Scholar 

  14. X. Liu, Y. Zhao, F. Li, Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2020.112832

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Zhang, D. Tang, 4-Nitrophenol-loaded magnetic mesoporous silica hybrid materials for spectrometric aptasensing of carcinoembryonic antigen. Micromachines (Basel) (2021). https://doi.org/10.3390/mi12101138

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Ji, J. Guo, B. Ye, G. Peng, C. Zhang, L. Zou, An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2021.113741

    Article  PubMed  PubMed Central  Google Scholar 

  17. Q. Pan, C.O.K. Law, M.M.H. Yung, K.C. Han, Y.L. Pon, T.C.K. Lau, Novel RNA aptamers targeting gastrointestinal cancer biomarkers CEA, CA50 and CA72-4 with superior affinity and specificity. PLoS One (2018). https://doi.org/10.1371/journal.pone.0198980

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y.J. Lee, S.R. Han, N.Y. Kim, S.H. Lee, J.S. Jeong, S.W. Lee, An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice. Gastroenterology (2012). https://doi.org/10.1053/j.gastro.2012.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  19. Z. Mitri, T. Constantine, R. O’Regan, The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother. Res. Pract. (2012). https://doi.org/10.1155/2012/743193

    Article  PubMed  PubMed Central  Google Scholar 

  20. G. Mendoza, A. Portillo, J. Olmos-Soto, Accurate breast cancer diagnosis through real-time PCR her-2 gene quantification using immunohistochemically-identified biopsies. Oncol. Lett. (2013). https://doi.org/10.3892/ol.2012.984

    Article  PubMed  PubMed Central  Google Scholar 

  21. W.J. Wang, Y.Y. Lei, J.H. Mei, C.L. Wang, Recent progress in HER2 associated breast cancer. Asian. Pac. J. Cancer Prev. (2015). https://doi.org/10.7314/apjcp.2015.16.7.2591

    Article  PubMed  Google Scholar 

  22. Y. Chai, X. Li, M. Yang, Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO(2) nanosheets as the electrochemical probe. Mikrochim. Acta. (2019). https://doi.org/10.1007/s00604-019-3412-y

    Article  PubMed  Google Scholar 

  23. Y. Zhang, N. Li, Y. Xu, P. Lu, N. Qi, M. Yang, C. Hou, D. Huo, An ultrasensitive dual-signal aptasensor based on functionalized Sb@ZIF-67 nanocomposites for simultaneously detect multiple biomarkers. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114508

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Xu, Y. Zhang, N. Li, M. Yang, T. Xiang, D. Huo, Z. Qiu, L. Yang, C. Hou, An ultra-sensitive dual-signal ratiometric electrochemical aptasensor based on functionalized MOFs for detection of HER2. Bioelectrochemistry (2022). https://doi.org/10.1016/j.bioelechem.2022.108272

    Article  PubMed  PubMed Central  Google Scholar 

  25. N. Zhou, F. Su, Z. Li, X. Yan, C. Zhang, B. Hu, L. He, M. Wang, Z. Zhang, Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Mikrochim. Acta. (2019). https://doi.org/10.1007/s00604-018-3184-9

    Article  PubMed  Google Scholar 

  26. J. Song, Development of Electrochemical Aptamer Biosensor for Tumor Marker MUC1 Determination. Int J. Electrochem. Sci. (2017). https://doi.org/10.20964/2017.06.46

    Article  Google Scholar 

  27. A. Fragoso, D. Latta, N. Laboria, F. von Germar, T.E. Hansen-Hagge, W. Kemmner, C. Gartner, R. Klemm, K.S. Drese, C.K. O’Sullivan, Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab. Chip. (2011). https://doi.org/10.1039/c0lc00398k

    Article  PubMed  Google Scholar 

  28. G. Zhang, Z. Liu, L. Fan, Y. Han, Y. Guo, A novel dual signal and label-free electrochemical aptasensor for mucin 1 based on hemin/graphene@PdPtNPs. Biosens. Bioelectron. (2020). https://doi.org/10.1016/j.bios.2020.112785

    Article  PubMed  PubMed Central  Google Scholar 

  29. M. Pan, J. Cai, S. Li, L. Xu, W. Ma, C. Xu, H. Kuang, Aptamer-gated ion channel for ultrasensitive mucin 1 detection. Anal. Chem. (2021). https://doi.org/10.1021/acs.analchem.0c04137

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Li, X. Guo, H. Li, X. Zuo, R. Hao, H. Song, A. Aldalbahi, Z. Ge, J. Li et al., Epitope binning assay using an electron transfer-modulated aptamer sensor. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b17324

    Article  PubMed  PubMed Central  Google Scholar 

  31. B. Huang, X.P. Liu, J.S. Chen, C.J. Mao, H.L. Niu, B.K. Jin, Electrochemiluminescence immunoassay for the prostate-specific antigen by using a CdS/chitosan/g-C(3)N(4) nanocomposite. Mikrochim. Acta. (2020). https://doi.org/10.1007/s00604-020-4125-y

    Article  PubMed  Google Scholar 

  32. J. Zhao, J. Wang, Y. Liu, X.X. Han, B. Xu, Y. Ozaki, B. Zhao, Detection of prostate cancer biomarkers via a SERS-based aptasensor. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114660

    Article  PubMed  PubMed Central  Google Scholar 

  33. J. Man, J. Dong, Y. Wang, L. He, S. Yu, F. Yu, J. Wang, Y. Tian, L. Liu et al., Simultaneous detection of VEGF and CEA by time-resolved chemiluminescence enzyme-linked aptamer assay. Int. J. Nanomed. (2020). https://doi.org/10.2147/IJN.S286317

    Article  Google Scholar 

  34. L. Qi, S. Liu, Y. Jiang, J.M. Lin, L. Yu, Q. Hu, Simultaneous detection of multiple tumor markers in blood by functional liquid crystal sensors assisted with target-induced dissociation of aptamer. Anal. Chem. (2020). https://doi.org/10.1021/acs.analchem.9b05317

    Article  PubMed  PubMed Central  Google Scholar 

  35. D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen, P. Mallikaratchy, K. Sefah, C.J. Yang, W. Tan, Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad.Sci. USA (2006). https://doi.org/10.1073/pnas.0602615103

    Article  PubMed  PubMed Central  Google Scholar 

  36. D.A. Daniels, H. Chen, B.J. Hicke, K.M. Swiderek, L. Gold, A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA (2003). https://doi.org/10.1073/pnas.2136683100

    Article  PubMed  PubMed Central  Google Scholar 

  37. K. Sefah, D. Shangguan, X. Xiong, M.B. O’Donoghue, W. Tan, Development of DNA aptamers using Cell-SELEX. Nat. Protoc. (2010). https://doi.org/10.1038/nprot.2010.66

    Article  PubMed  Google Scholar 

  38. B. J. Hicke, A. W. Stephens, T. Gould, Y. F. Chang, C. K. Lynott, J. Heil, S. Borkowski, C. S. Hilger, G. Cook, S. Warren, P. G. Schmidt, Tumor targeting by an aptamer. J. Nucl. Med. 47(4):668–678. (2006)

  39. H. Shi, X. He, K. Wang, X. Wu, X. Ye, Q. Guo, W. Tan, Z. Qing, X. Yang, B. Zhou, Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc. Natl. Acad. Sci. USA (2011). https://doi.org/10.1073/pnas.1016197108

    Article  PubMed  PubMed Central  Google Scholar 

  40. G. Zhu, J. Zheng, E. Song, M. Donovan, K. Zhang, C. Liu, W. Tan, Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA (2013). https://doi.org/10.1073/pnas.1220817110

    Article  PubMed  PubMed Central  Google Scholar 

  41. D. Shangguan, L. Meng, Z.C. Cao, Z. Xiao, X. Fang, Y. Li, D. Cardona, R.P. Witek, C. Liu, W. Tan, Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem. (2008). https://doi.org/10.1021/ac701962v

    Article  PubMed  Google Scholar 

  42. X. Wu, Z. Zhao, H. Bai, T. Fu, C. Yang, X. Hu, Q. Liu, C. Champanhac, I.T. Teng et al., DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics (2015). https://doi.org/10.7150/thno.11938

    Article  PubMed  PubMed Central  Google Scholar 

  43. L. Li, J. Wan, X. Wen, Q. Guo, H. Jiang, J. Wang, Y. Ren, K. Wang, Identification of a new DNA aptamer by tissue-SELEX for cancer recognition and imaging. Anal. Chem. (2021). https://doi.org/10.1021/acs.analchem.1c01445

    Article  PubMed  PubMed Central  Google Scholar 

  44. X. Ren, J. Li, X. Wu, J. Zhao, Q. Yang, X. Lou, A highly specific aptamer probe targeting PD-L1 in tumor tissue sections: mutation favors specificity. Anal. Chim. Acta. (2021). https://doi.org/10.1016/j.aca.2021.339066

    Article  PubMed  Google Scholar 

  45. L. Li, X. Yang, K. Li, G. Zhang, Y. Ma, B. Cai, S. Li, H. Ding, J. Deng et al., d-/l-Isothymidine incorporation in the core sequence of aptamer BC15 enhanced its binding affinity to the hnRNP A1 protein. Org. Biomol. Chem. (2018). https://doi.org/10.1039/c8ob01454j

    Article  PubMed  PubMed Central  Google Scholar 

  46. H. Li, L. Guo, A. Huang, H. Xu, X. Liu, H. Ding, J. Dong, J. Li, C. Wang et al., Nanoparticle-conjugated aptamer targeting hnRNP A2/B1 can recognize multiple tumor cells and inhibit their proliferation. Biomaterials (2015). https://doi.org/10.1016/j.biomaterials.2015.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  47. Y. Yang, Y. Fu, H. Su, L. Mao, M. Chen, Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens. Bioelectron. (2018). https://doi.org/10.1016/j.bios.2018.09.062

    Article  PubMed  PubMed Central  Google Scholar 

  48. B. Hong, Y. Zu, Detecting circulating tumor cells: current challenges and new trends. Theranostics (2013). https://doi.org/10.7150/thno.5195

    Article  PubMed  PubMed Central  Google Scholar 

  49. J. Zhang, S. Li, F. Liu, L. Zhou, N. Shao, X. Zhao, SELEX aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS One (2015). https://doi.org/10.1371/journal.pone.0121920

    Article  PubMed  PubMed Central  Google Scholar 

  50. H. Shen, W. Deng, Y. He, X. Li, J. Song, R. Liu, H. Liu, G. Yang, L. Li, Ultrasensitive aptasensor for isolation and detection of circulating tumor cells based on CeO(2)@Ir nanorods and DNA walker. Biosens. Bioelectron. (2020). https://doi.org/10.1016/j.bios.2020.112516

    Article  PubMed  PubMed Central  Google Scholar 

  51. Z. Zhang, C. Tang, L. Zhao, L. Xu, W. Zhou, Z. Dong, Y. Yang, Q. Xie, X. Fang, Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale (2019). https://doi.org/10.1039/c9nr01589b

    Article  PubMed  PubMed Central  Google Scholar 

  52. H. Chen, C. Huang, Y. Wu, N. Sun, C. Deng, Exosome metabolic patterns on aptamer-coupled polymorphic carbon for precise detection of early gastric cancer. ACS Nano. (2022). https://doi.org/10.1021/acsnano.2c05355

    Article  PubMed  PubMed Central  Google Scholar 

  53. C.L. Esposito, C. Quintavalle, F. Ingenito, D. Rotoli, G. Roscigno, S. Nuzzo, R. Thomas, S. Catuogno, V. de Franciscis, G. Condorelli, Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Mol. Ther. Nucleic Acids (2021). https://doi.org/10.1016/j.omtn.2021.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  54. A. Molinero-Fernandez, M.A. Lopez, A. Escarpa, Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion. Anal. Chem. (2020). https://doi.org/10.1021/acs.analchem.9b05384

    Article  PubMed  Google Scholar 

  55. A.T.E. Vilian, W. Kim, B. Park, S.Y. Oh, T. Kim, Y.S. Huh, C.K. Hwangbo, Y.K. Han, Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: a predictive strategy for heart failure. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.111549

    Article  PubMed  Google Scholar 

  56. S. Huang, Z. Liu, Y. Yan, J. Chen, R. Yang, Q. Huang, M. Jin, L. Shui, Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF(67) for ultrasensitive CRP detection. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114129

    Article  PubMed  PubMed Central  Google Scholar 

  57. V. Singh, Ultrasensitive quantum dot-coupled-surface plasmon microfluidic aptasensor array for serum insulin detection. Talanta (2020). https://doi.org/10.1016/j.talanta.2020.121314

    Article  PubMed  Google Scholar 

  58. M. Yu, X. Zhang, X. Zhang, Q.U.A. Zahra, Z. Huang, Y. Chen, C. Song, M. Song, H. Jiang et al., An electrochemical aptasensor with N protein binding aptamer-complementary oligonucleotide as probe for ultra-sensitive detection of COVID-19. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114436

    Article  PubMed  PubMed Central  Google Scholar 

  59. C. Han, W. Li, Q. Li, W. Xing, H. Luo, H. Ji, X. Fang, Z. Luo, L. Zhang, CRISPR/Cas12a-Derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2021.113922

    Article  PubMed  PubMed Central  Google Scholar 

  60. A. Kurmangali, K. Dukenbayev, D. Kanayeva, Sensitive detection of SARS-CoV-2 variants using an electrochemical impedance spectroscopy based aptasensor. Int. J. Mol. Sci. (2022). https://doi.org/10.3390/ijms232113138

    Article  PubMed  PubMed Central  Google Scholar 

  61. C. Han, W. Xing, W. Li, X. Fang, J. Zhao, F. Ge, W. Ding, P. Qu, Z. Luo, L. Zhang, Aptamers dimerization inspired biomimetic clamp assay towards impedimetric SARS-CoV-2 antigen detection. Sens. Actuators B Chem. (2023). https://doi.org/10.1016/j.snb.2023.133387

    Article  PubMed  PubMed Central  Google Scholar 

  62. R. Chen, L. Kan, F. Duan, L. He, M. Wang, J. Cui, Z. Zhang, Z. Zhang, Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim. Acta. (2021). https://doi.org/10.1007/s00604-021-04974-z

    Article  PubMed  PubMed Central  Google Scholar 

  63. N. Cennamo, L. Pasquardini, F. Arcadio, L. Lunelli, L. Vanzetti, V. Carafa, L. Altucci, L. Zeni, SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta (2021). https://doi.org/10.1016/j.talanta.2021.122532

    Article  PubMed  PubMed Central  Google Scholar 

  64. K. Ghanbari, M. Roushani, A. Azadbakht, Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal. Biochem. (2017). https://doi.org/10.1016/j.ab.2017.07.016

    Article  PubMed  Google Scholar 

  65. G. Kim, J. Kim, S.M. Kim, T. Kato, J. Yoon, S. Noh, E.Y. Park, C. Park, T. Lee, J.W. Choi, Fabrication of MERS-nanovesicle biosensor composed of multi-functional DNA aptamer/graphene-MoS(2) nanocomposite based on electrochemical and surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. (2022). https://doi.org/10.1016/j.snb.2021.131060

    Article  PubMed  PubMed Central  Google Scholar 

  66. J. Kang, G. Yeom, S.-J. Ha, M.-G. Kim, Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. New J. Chem. (2019). https://doi.org/10.1039/c8nj06458j

    Article  Google Scholar 

  67. A. Kushwaha, Y. Takamura, K. Nishigaki, M. Biyani, Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43187-6

    Article  PubMed  PubMed Central  Google Scholar 

  68. H. Chen, S.G. Park, N. Choi, J.I. Moon, H. Dang, A. Das, S. Lee, D.G. Kim, L. Chen, J. Choo, SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens. Bioelectron. (2020). https://doi.org/10.1016/j.bios.2020.112496

    Article  PubMed  PubMed Central  Google Scholar 

  69. V.I. Kukushkin, N.M. Ivanov, A.A. Novoseltseva, A.S. Gambaryan, I.V. Yaminsky, A.M. Kopylov, E.G. Zavyalova, Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One (2019). https://doi.org/10.1371/journal.pone.0216247

    Article  PubMed  PubMed Central  Google Scholar 

  70. A.K. Cheng, D. Sen, H.Z. Yu, Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry (2009). https://doi.org/10.1016/j.bioelechem.2009.04.007

    Article  PubMed  Google Scholar 

  71. S. Ranjbar, S. Shahrokhian, F. Nurmohammadi, Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sens. Actuators B (2018). https://doi.org/10.1016/j.snb.2017.08.160

    Article  Google Scholar 

  72. M.R. Hasan, T. Pulingam, J.N. Appaturi, A.N. Zifruddin, S.J. Teh, T.W. Lim, F. Ibrahim, B.F. Leo, K.L. Thong, Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal. Biochem. (2018). https://doi.org/10.1016/j.ab.2018.06.001

    Article  PubMed  Google Scholar 

  73. N. Li, X. Huang, D. Sun, W. Yu, W. Tan, Z. Luo, Z. Chen, Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Mikrochim. Acta. (2018). https://doi.org/10.1007/s00604-018-3081-2

    Article  PubMed  Google Scholar 

  74. D. Gou, G. Xie, Y. Li, X. Zhang, H. Chen, Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe(3)O(4) and Pt nanoparticles. Mikrochim. Acta. (2018). https://doi.org/10.1007/s00604-018-2972-6

    Article  PubMed  Google Scholar 

  75. J. Wang, X. Wu, C. Wang, N. Shao, P. Dong, R. Xiao, S. Wang, Magnetically assisted surface-enhanced raman spectroscopy for the detection of staphylococcus aureus based on aptamer recognition. ACS Appl. Mater. Interfaces (2015). https://doi.org/10.1021/acsami.5b06446

    Article  PubMed  PubMed Central  Google Scholar 

  76. X. Ma, X. Lin, X. Xu, Z. Wang, Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Mikrochim. Acta. (2021). https://doi.org/10.1007/s00604-021-04791-4

    Article  PubMed  Google Scholar 

  77. Y. Hou, N. Long, Q. Xu, Y. Li, P. Song, M. Yang, J. Wang, L. Zhou, P. Sheng, W. Kong, Development of a Nafion-MWCNTs and in-situ generated Au nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive detection of OTA. Food Chem (2023). https://doi.org/10.1016/j.foodchem.2022.134375

    Article  PubMed  Google Scholar 

  78. J. Zhang, X. Xu, Y. Qiang, Ultrasensitive electrochemical aptasensor for ochratoxin A detection using AgPt bimetallic nanoparticles decorated iron-porphyrinic metal-organic framework for signal amplification. Sens. Actuators B (2020). https://doi.org/10.1016/j.snb.2020.127964

    Article  Google Scholar 

  79. S. Liu, Y. Huo, S. Deng, G. Li, S. Li, L. Huang, S. Ren, Z. Gao, A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2021.113891

    Article  PubMed  PubMed Central  Google Scholar 

  80. X. Zhao, H. Shen, B. Huo, Y. Wang, Z. Gao, A novel bionic magnetic SERS aptasensor for the ultrasensitive detection of Deoxynivalenol based on :dual antennae” nano-silver. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114383

    Article  PubMed  PubMed Central  Google Scholar 

  81. H. Yan, B. He, L. Xie, X. Cao, A label-free electrochemical aptasensor based on NH(2)-MIL-235(Fe) for the sensitive detection of citrinin. Anal. Methods (2022). https://doi.org/10.1039/d2ay01243j

    Article  PubMed  Google Scholar 

  82. S. Eissa, M. Zourob, Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal. Chem (2017). https://doi.org/10.1021/acs.analchem.6b04914

    Article  PubMed  Google Scholar 

  83. C. Zhu, D. Liu, Z. Chen, L. Li, T. You, An ultra-sensitive aptasensor based on carbon nanohorns/gold nanoparticles composites for impedimetric detection of carbendazim at picogram levels. J. Coll. Interface Sci. (2019). https://doi.org/10.1016/j.jcis.2019.03.035

    Article  Google Scholar 

  84. T. Liu, B. Lin, X. Yuan, Z. Chu, W. Jin, In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114147

    Article  PubMed  PubMed Central  Google Scholar 

  85. Y. Wang, Y. Wang, F. Wang, H. Chi, G. Zhao, Y. Zhang, T. Li, Q. Wei, Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J. Coll. Interface Sci. (2022). https://doi.org/10.1016/j.jcis.2021.08.055

    Article  Google Scholar 

  86. C. Tian, L. Zhao, J. Zhu, S. Zhang, Ultrasensitive detection of trace Hg(2+) by SERS aptasensor based on dual recycling amplification in water environment. J. Hazard Mater. (2021). https://doi.org/10.1016/j.jhazmat.2021.126251

    Article  PubMed  Google Scholar 

  87. S. Qian, Y. Han, F. Xu, D. Feng, X. Yang, X. Wu, L. Hao, M. Yuan, A fast, sensitive, low-cost electrochemical paper-based chip for real-time simultaneous detection of cadmium (II) and lead (II) via aptamer. Talanta (2022). https://doi.org/10.1016/j.talanta.2022.123548

    Article  PubMed  Google Scholar 

  88. M. Chen, M. Hassan, H. Li, Q. Chen, Fluorometric determination of lead(II) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles. Mikrochim. Acta. (2020). https://doi.org/10.1007/s00604-019-4030-4

    Article  PubMed  PubMed Central  Google Scholar 

  89. S.S. Baghbaderani, A. Noorbakhsh, Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As(III) aptasensor. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.01.059

    Article  PubMed  Google Scholar 

  90. L. Ma, D. Liao, Z. Zhao, J. Kou, H. Guo, X. Xiong, S. Man, Sensitive Small Molecule Aptasensing based on Hybridization Chain Reaction and CRISPR/Cas12a Using a Portable 3D-Printed Visualizer. ACS Sens. (2023). https://doi.org/10.1021/acssensors.2c02097

    Article  PubMed  Google Scholar 

  91. X. Cheng, Y. Li, J. Kou, D. Liao, W. Zhang, L. Yin, S. Man, L. Ma, Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: a review. Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.bios.2022.114559

    Article  PubMed  PubMed Central  Google Scholar 

  92. C. Niu, C. Wang, F. Li, X. Zheng, X. Xing, C. Zhang, Aptamer assisted CRISPR-Cas12a strategy for small molecule diagnostics. Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2021.113196

    Article  PubMed  Google Scholar 

  93. Y. Xiong, J. Zhang, Z. Yang, Q. Mou, Y. Ma, Y. Xiong, Y. Lu, Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J. Am. Chem. Soc. (2020). https://doi.org/10.1021/jacs.9b09211

    Article  PubMed  PubMed Central  Google Scholar 

  94. A.M. Yoshikawa, A. Rangel, T. Feagin, E.M. Chun, L. Wan, A. Li, L. Moeckl, D. Wu, M. Eisenstein et al., Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-26933-1

    Article  PubMed  PubMed Central  Google Scholar 

  95. D. Shu, Y. Shu, F. Haque, S. Abdelmawla, P. Guo, Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. (2011). https://doi.org/10.1038/nnano.2011.105

    Article  PubMed  PubMed Central  Google Scholar 

  96. B. Zhu, A. Hernandez, M. Tan, J. Wollenhaupt, S. Tabor, C.C. Richardson, Synthesis of 2’-Fluoro RNA by Syn5 RNA polymerase. Nucleic Acids Res. (2015). https://doi.org/10.1093/nar/gkv367

    Article  PubMed  PubMed Central  Google Scholar 

  97. G. Ying, X. Lu, J. Mei, Y. Zhang, J. Chen, X. Wang, Z. Ou, Y. Yi, A structure-activity relationship of a thrombin-binding aptamer containing LNA in novel sites. Bioorg. Med. Chem. (2019). https://doi.org/10.1016/j.bmc.2019.05.010

    Article  PubMed  Google Scholar 

  98. J. Chen, J. Wang, Z. Luo, X. Fang, L. He, J. Zhu, Z. Qurat Ul Ain, J. He, H. Ma et al., Productive screening of single aptamers with ddPCR. Analyst (2020). https://doi.org/10.1039/d0an00460j

    Article  PubMed  PubMed Central  Google Scholar 

  99. N. Qiao, J. Li, X. Wu, D. Diao, J. Zhao, J. Li, X. Ren, X. Ding, D. Shangguan, X. Lou, Speeding up in vitro discovery of structure-switching aptamers via magnetic cross-linking precipitation. Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b00081

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenjun Bai or Pingkun Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yao, S., Wang, C. et al. Diverse applications and development of aptamer detection technology. ANAL. SCI. 39, 1627–1641 (2023). https://doi.org/10.1007/s44211-023-00409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00409-2

Keywords

Navigation