Skip to main content
Log in

Electrochemical sensors based on platinum-coated MOF-derived nickel-/N-doped carbon nanotubes (Pt/Ni/NCNTs) for sensitive nitrite detection

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

As excess nitrite has a serious threat to the human health and environment, constructing novel electrochemical sensors for sensitive nitrite detection is of great importance. In this report, platinum nanoparticles were deposited on nickel-/N-doped carbon nanotubes, which were obtained through a self-catalytically grown process with Ni-MOF as precursors. The as-prepared Pt/Ni/NCNTs were applied as amperometric sensors and presented superior sensing properties for nitrite detection. Benefiting from the synergy of Pt and Ni/NCNTs, Pt/Ni/NCNTs displayed much wider detection ranges (0.5–40 mM and 40–110 mM) for nitrite sensing. The sensitivity is 276.92 μA mM−1 cm−2 and 224.39 μA mM−1 cm−2, respectively. The detection limit is 0.17 μM. The Pt/Ni/NCNTs sensors also showed good feasibility for nitrite sensing in real samples (milk and peach juice) analysis. The active Pt/Ni/NCNTs composites and facile fabrication technique may provide useful strategies to develop other sensitive nitrite sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Mariyappan, S.-M. Chen, K. Murugan, A. Jeevika, T. Jeyapragasam, R. Ramachandran, Colloids Surf. A 637, 128271 (2022). https://doi.org/10.1016/j.colsurfa.2022.128271

    Article  CAS  Google Scholar 

  2. A.R. Marlinda, M.N. Anamt, N. Yusoff, S. Sagadevan, Y.A. Wahab, M.R. Johan, Trends Environ. Anal. Chem. 34, e00162 (2022). https://doi.org/10.1016/j.teac.2022.e00162

    Article  CAS  Google Scholar 

  3. Z. Yang, Y. Zhong, X. Zhou, W. Zhang, Y. Yin, W. Fang et al., J. Food Measurem. Charact. 16(2), 1572–1582 (2022). https://doi.org/10.1007/s11694-021-01270-5

    Article  Google Scholar 

  4. J. Wu, X. Wang, Y. Lin, Y. Zheng, J.-M. Lin, Talanta 154, 73–79 (2016). https://doi.org/10.1016/j.talanta.2016.03.062

    Article  CAS  PubMed  Google Scholar 

  5. Z. Ma, J. Li, X. Hu, Z. Cai, X. Dou, Adv. Sci. 7(24), 2002991 (2020). https://doi.org/10.1002/advs.202002991

    Article  CAS  Google Scholar 

  6. P. Singh, M.K. Singh, Y.R. Beg, G.R. Nishad, Talanta 191, 364–381 (2019). https://doi.org/10.1016/j.talanta.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  7. H.S. Lim, S.J. Lee, E. Choi, S.B. Lee, H.S. Nam, J.K. Lee, Food Chem. 382, 132280 (2022). https://doi.org/10.1016/j.foodchem.2022.132280

    Article  CAS  PubMed  Google Scholar 

  8. M. Shivakumar, S. Manjunatha, K.N. Nithyayini, M.S. Dharmaprakash, K.L. Nagashree, J. Elect. Chem. 882, 115016 (2021). https://doi.org/10.1016/j.jelechem.2021.115016

    Article  CAS  Google Scholar 

  9. T. Zhe, M. Li, F. Li, R. Li, F. Bai, T. Bu et al., Food Chem. 367, 130666 (2022). https://doi.org/10.1016/j.foodchem.2021.130666

    Article  CAS  PubMed  Google Scholar 

  10. Y. Ma, Y. Wang, D. Xie, Y. Gu, H. Zhang, G. Wang et al., ACS Appl. Mater. Interfaces. 10(7), 6541–6551 (2018). https://doi.org/10.1021/acsami.7b16536

    Article  CAS  PubMed  Google Scholar 

  11. S. Lu, M. Hummel, X. Wang, W. He, R. Pathak, X. Dong et al., J. Elect. Soc 167(14), 146517 (2020). https://doi.org/10.1149/1945-7111/abc99d

    Article  CAS  Google Scholar 

  12. W. Yi, Z. Li, W. Dong, C. Han, Y. Guo, M. Liu et al., ACS Appl. Nano Mater. 5(1), 216–226 (2022). https://doi.org/10.1021/acsanm.1c02690

    Article  CAS  Google Scholar 

  13. F. Mollarasouli, M.R. Majidi, K. Asadpour-Zeynali, Electrochim. Acta 291, 132–141 (2018). https://doi.org/10.1016/j.electacta.2018.08.132

    Article  CAS  Google Scholar 

  14. K. Wang, C. Wu, F. Wang, C. Liu, C. Yu, G. Jiang, Electrochim. Acta 285, 128–138 (2018). https://doi.org/10.1016/j.electacta.2018.07.228

    Article  CAS  Google Scholar 

  15. Z. Zhao, J. Zhang, W. Wang, Y. Sun, P. Li, J. Hu et al., Appl. Surf. Sci. 485, 274–282 (2019). https://doi.org/10.1016/j.apsusc.2019.04.202

    Article  CAS  Google Scholar 

  16. L. Wu, X. Zhang, M. Wang, L. He, Z. Zhang, Measurement 128, 189–196 (2018). https://doi.org/10.1016/j.measurement.2018.06.041

    Article  Google Scholar 

  17. Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou et al., Adv. Func. Mater. 29(38), 1904481 (2019). https://doi.org/10.1002/adfm.201904481

    Article  CAS  Google Scholar 

  18. D. Bin, B. Yang, C. Li, Y. Liu, X. Zhang, Y. Wang et al., ACS Appl. Mater. Interfaces. 10(31), 26178–26187 (2018). https://doi.org/10.1021/acsami.8b04940

    Article  CAS  PubMed  Google Scholar 

  19. Y. Lu, H. Zhang, E.H. Ang, Z. Nie, H. Liu, Y. Du et al., Mater. Today Phys 16, 100303 (2021). https://doi.org/10.1016/j.mtphys.2020.100303

    Article  CAS  Google Scholar 

  20. T.P. Wang, P.Y. Tsou, C.L. Lee, Int. J. Energy Res. 46(6), 8491–8502 (2022). https://doi.org/10.1002/er.7710

    Article  CAS  Google Scholar 

  21. X. Xu, Z. Ma, D. Li, Z. Su, X. Dong, H. Huang et al., ACS Appl. Nano Mater. 5(4), 4983–4990 (2022). https://doi.org/10.1021/acsanm.1c04575

    Article  CAS  Google Scholar 

  22. T. Dong, X. Zhang, Y. Cao, H.-S. Chen, P. Yang, Inorg. Chem. Front. 6(4), 1073–1080 (2019). https://doi.org/10.1039/c8qi01335g

    Article  CAS  Google Scholar 

  23. Z. Wang, L. Cheng, R. Zhang, W. Lv, W. Wang, J. Alloys Comp. 857, 158249 (2021). https://doi.org/10.1016/j.jallcom.2020.158249

    Article  CAS  Google Scholar 

  24. M. Yao, B. Wang, N. Wang, S. Komarneni, Y. Chen, J. Wang et al., ACS Sust. Chem. Eng. 8(13), 5287–5295 (2020). https://doi.org/10.1021/acssuschemeng.0c00268

    Article  CAS  Google Scholar 

  25. D. Zhu, Q. Zhen, J. Xin, H. Ma, L. Tan, H. Pang et al., Sens. Act. B 321, 128541 (2020). https://doi.org/10.1016/j.snb.2020.128541

    Article  CAS  Google Scholar 

  26. T. Ghosh, P. Sarkar, A.P. Turner, Bioelectrochemistry 102, 1–9 (2015). https://doi.org/10.1016/j.bioelechem.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  27. M.R. Hasan, T. Islam, M.M. Hasan, A.-N. Chowdhury, A.J.S. Ahammad, A.H. Reaz et al., J. Phys. Chem. Solids 165, 110659 (2022). https://doi.org/10.1016/j.jpcs.2022.110659

    Article  CAS  Google Scholar 

  28. M. Sookhakian, M.A. Mat Teridi, G.B. Tong, P.M. Woi, M. Khalil, Y. Alias, ACS Appl. Nano Mater. 4(11), 12737–12744 (2021). https://doi.org/10.1021/acsanm.1c03351

    Article  CAS  Google Scholar 

  29. M. Faisal, M.A. Rashed, M.M. Abdullah, F.A. Harraz, M. Jalalah, M.S. Al-Assiri, J. Elect. Chem. 879, 114805 (2020). https://doi.org/10.1016/j.jelechem.2020.114805

    Article  CAS  Google Scholar 

  30. B. Dou, J. Yan, Q. Chen, X. Han, Q. Feng, X. Miao et al., Sens. Actuat. B 328, 129082 (2021). https://doi.org/10.1016/j.snb.2020.129082

    Article  CAS  Google Scholar 

  31. E. Saeb, K. Asadpour-Zeynali, Electrochim. Acta 417, 140278 (2022). https://doi.org/10.1016/j.electacta.2022.140278

    Article  CAS  Google Scholar 

  32. M. Ghanei-Motlagh, M.A. Taher, Biosens. Bioelectron. 109, 279–285 (2018). https://doi.org/10.1016/j.bios.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  33. Q. Sheng, D. Liu, J. Zheng, J. Electroanal. Chem. 796, 9–16 (2017). https://doi.org/10.1016/j.jelechem.2017.04.050

    Article  CAS  Google Scholar 

  34. S. Zhang, Y. Tang, Y. Chen, J. Zheng, J. Electroanal. Chem. 839, 195–201 (2019). https://doi.org/10.1016/j.jelechem.2019.03.036

    Article  CAS  Google Scholar 

  35. Y. Yang, J. Zhang, Y.W. Li, Q. Shan, W. Wu, Colloids Surf A 625, 126865 (2021). https://doi.org/10.1016/j.colsurfa.2021.126865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang natural science foundation (No. Y19E060021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoyong Yin or Shengji Wu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yin, H., Qu, K. et al. Electrochemical sensors based on platinum-coated MOF-derived nickel-/N-doped carbon nanotubes (Pt/Ni/NCNTs) for sensitive nitrite detection. ANAL. SCI. 39, 1297–1306 (2023). https://doi.org/10.1007/s44211-023-00336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00336-2

Keywords

Navigation