Skip to main content
Log in

An integrated strategy of spectrum–effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum–effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum–effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.L. Ren, A.H. Zhang, L. Kong, Y. Han, G.L. Yan, H. Sun, X.J. Wang, Phytomedicine (2020). https://doi.org/10.1016/j.phymed.2019.153165

    Article  PubMed  PubMed Central  Google Scholar 

  2. W.J. Li, Y. Zhang, S.J. Shi, G. Yang, Z.H. Liu, J.M. Wang, W.Y. Kang, Food Chem Toxicol. (2019). https://doi.org/10.1016/j.fct.2019.110754

    Article  PubMed  PubMed Central  Google Scholar 

  3. R.F. Qiao, L.F. Zhou, M.Y. Zhong, M. Zhang, L. Yang, Y.F. Yang, H.F. Chen, W.L. Yang, J.B. Yuan, J Ethnopharmacol. (2021) https://doi.org/10.1016/j.jep.2021.114366

  4. X.W. Zhou, H.Y. Liu, M.Y. Zhang, C.Y. Li, G.H. Li, Phytochem Anal. (2021). https://doi.org/10.1002/pca.2980

    Article  PubMed  Google Scholar 

  5. Y.F. Lu, D.X. Li, R. Zhang, L.L. Zhao, Z. Qiu, Y. Du, S. Ji, D.Q. Tang, Front Pharmacol. (2022). https://doi.org/10.3389/fphar.2022.809482

    Article  PubMed  PubMed Central  Google Scholar 

  6. Z. Yang, Q.S. Yin, J. Ma, C.S. Yang, Y.Y. Sheng, L.L. Song, T. Pang, P.W. Zhuang, H. Guo, Y.J. Zhang, Inflammation (2020). https://doi.org/10.1007/s10753-020-01276-z

    Article  PubMed  Google Scholar 

  7. Y.T. Liang, L.F. Dai R.Y. Guo, X.Q. Ma, X.Y. Zheng, Y.N. Feng, Chem Adhesion. (2022) https://doi.org/10.3969/j.issn.1001-0017.2022.04.017.

  8. S.L. Li, B.C. Xing, D. Lin, H.J. Yi, Q.S. Shao, Ind Crop Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.112539

    Article  Google Scholar 

  9. J.R. Park, H.H. Kang, J.K. Cho, K.D. Moon, Y.J. Kim, Foods. (2020). https://doi.org/10.3390/foods9101437

  10. J.N. Li, J.F. Wen, G.Q. Tang, R. Li, H.J. Guo, W.F. Weng, D. Wang, S.G. Ji, Spectrochim Acta A Mol Biomol Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.118080

    Article  PubMed  PubMed Central  Google Scholar 

  11. X.H. Guo, R. Cai, S.S. Wang, B. Tang, Y.Q. Li, W.J. Zhao, R Soc Open Sci. (2018). https://doi.org/10.1098/rsos.170714

    Article  PubMed  PubMed Central  Google Scholar 

  12. J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, M.P. Diago, J Sci Food Agric. (2017). https://doi.org/10.1002/jsfa.8241

    Article  PubMed  Google Scholar 

  13. M.T. Torres, M. Sánchez, N. Vega-Castellote, D. Luqui-Muñoz, Pérez-Marín. Spectrochim Acta A Mol Biomol Spectrosc. (2021). https://doi.org/10.1016/j.saa.2020.118972

    Article  PubMed  Google Scholar 

  14. W.F. Tian, G.J. Chen, G.R. Zhang, D.H. Wang, M. Tilley, Y.H. Li, Food chem. (2021). https://doi.org/10.1016/j.foodchem.2020.128633

    Article  PubMed  Google Scholar 

  15. J.M. Cáceres-Nevado, A. Garrido-Varo, E. De Pedro-Sanz, D. Tejerina-Barrado, D.C. Pérez-Marín, Meat Sci. (2021). https://doi.org/10.1016/j.meatsci.2021.108440

    Article  PubMed  Google Scholar 

  16. Y. Yang, Y.J. Wu, W.L. Li, X.S. Liu, J.Y. Zheng, W.T. Zhang, Y. Chen, Spectrochim Acta A Mol Biomol Spectrosc. (2018). https://doi.org/10.1016/j.saa.2017.10.019

    Article  PubMed  Google Scholar 

  17. Y.H. Zhou, Z.T. Zuo, F.R. Xu, Y.Z. Wang, Spectrochim Acta A Mol Biomol Spectrosc. (2020). https://doi.org/10.1016/j.saa.2019.117619

    Article  PubMed  Google Scholar 

  18. C.K. Pezzei, S.A. Schönbichler, C.G. Kirchler, J. Schmelzer, S. Hussain, V.A. Huck-Pezzei, M. Popp, J. Krolitzek, G.K. Bonn, C.W. Huck, Talanta (2017). https://doi.org/10.1016/j.talanta.2017.03.067

    Article  PubMed  Google Scholar 

  19. J. Zhao, G. Tian, Y.Y. Qiu, H.B. Qu, Spectrochim Acta A Mol Biomol Spectrosc. (2021). https://doi.org/10.1016/j.saa.2020.118878

    Article  PubMed  Google Scholar 

  20. X.Y. Chen, X.F. Sun, H.M. Hua, Y. Yi, H.L. Li, C. Chen, Spectrochim Acta A Mol Biomol Spectrosc. (2019). https://doi.org/10.1016/j.saa.2019.117169

    Article  PubMed  Google Scholar 

  21. X.F. Sun, H.L. Li, Y. Yi, H.M. Hua, Y. Guan, C. Chen, Spectrochim Acta A Mol Biomol Spectrosc. (2021). https://doi.org/10.1016/j.saa.2020.119346

    Article  PubMed  Google Scholar 

  22. T. Leng, F. Li, Y. Chen, L.J. Tang, J.H. Xie, Q. Yu, Meat Sci. (2021). https://doi.org/10.1016/j.meatsci.2021.108559

    Article  PubMed  Google Scholar 

  23. C.F. Shi, H.T. Yang, T.T. Chen, L.P. Guo, X.Y. Leng, P.B. Deng, J. Bi, J.G. Pan, Y.M. Wang, Bioresour Technol. (2022). https://doi.org/10.1016/j.biortech.2022.127248

    Article  PubMed  Google Scholar 

  24. J.C. Lyu, J. Zhang, J Affect Disord. (2019). https://doi.org/10.1016/j.jad.2018.12.111

    Article  PubMed  Google Scholar 

  25. S.F. Ding, C.Y. Su, J.Z. Yu, Artif Intell Rev. (2011). https://doi.org/10.1007/s10462-011-9208-z

    Article  Google Scholar 

  26. L. Yu, W.F. Jin, X.H. Li, Y.Y. Zhang, Evid Based Complement Alternat Med. (2018). https://doi.org/10.1155/2018/6391414

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chinese Pharmacopoeia Committee, Ch.P. (Beijing, China, 2020), p. 108

  28. X.L. Hu, Y.B. Li, S. Qi, Q. Zhang, T.S. Ren, W.H. Meng, Q.C. Zhao, J Funct Foods. (2016). https://doi.org/10.1016/j.jff.2016.10.012

    Article  PubMed  Google Scholar 

  29. Z.Q. Luo, Y. Liu, X. Han, W.N. Yang, G.P. Wang, J. Wang, X.Q. Jiang, M.L. Sen, X.Y. Li, G.H. Yu, Y.Y. Shi, Front Nutr. (2021). https://doi.org/10.3389/fnut.2021.677659

    Article  PubMed  PubMed Central  Google Scholar 

  30. X.W. Ye, L.T. Xia, H.M. Ren, Y.L. Zheng, M. Yang, J.L. Zhang, X. Chen, H.P. Liu, Q. Zhang, Chin Tradit Herbal. Drugs (2020). https://doi.org/10.7501/j.issn.0253-2670.2020.07.032

    Article  Google Scholar 

  31. J. X. He, B. Yang, H. X. Ke, R. L. Yin, J. D. Zhang, H. Li, Chin J Exp Tradit Med Form (2015) https://doi.org/10.3422/j.cnki.Syfjx.2015220060

  32. G. H. Liu, L. L. Wei, H. L. Liu, Western Journal of Traditional Chinese Medicine. (2021) https://doi.org/10.12174/j.issn.2096-9600.2021.11.15

  33. L.Y. Qiu, Z.H. Liang, X.Y. Wu, Y.J. Pan, J.W. Fang, Chin Tradit Herbal. Drugs (2021). https://doi.org/10.7501/j.issn.0253-2670.2021.13.006

    Article  Google Scholar 

  34. S. Protti, A. Mezzetti, J Mol Liq. (2015). https://doi.org/10.1016/j.molliq.2014.12.001

    Article  Google Scholar 

  35. M. Vázquez-Espinosa, A.V. González-de-Peredo, E. Espada-Bellido, M. Ferreiro-González, G.F. Barbero, M. Palma, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.129688

    Article  PubMed  Google Scholar 

  36. J.D. Zhang, T. Chen, K. Li, H.Y. Xu, R.X. Liang, W.H. Wang, H. Li, A.J. Shao, B. Yang, J Chromatogr B Analyt Technol Biomed Life Sci. (2019). https://doi.org/10.1016/j.jchromb.2019.121854

    Article  PubMed  PubMed Central  Google Scholar 

  37. Y.X. Zhou, X.H. Gong, H. Zhang, C. Peng, Biomed Pharmacother. (2020). https://doi.org/10.1016/j.biopha.2020.110505

    Article  PubMed  PubMed Central  Google Scholar 

  38. L.L. Zhang, W. Wei, Pharmacol Ther. (2020). https://doi.org/10.1016/j.pharmthera.2019.107452

    Article  PubMed  PubMed Central  Google Scholar 

  39. X.L. Wang, S.T. Feng, Y.T. Wang, N.H. Chen, Z.Z. Wang, Y. Zhang, Phytomedicine (2021). https://doi.org/10.1016/j.phymed.2021.153669

    Article  PubMed  PubMed Central  Google Scholar 

  40. X. Ma, W.W. Zhang, Y.X. Jiang, J.X. Wen, S.Z. Wei, Y.L. Zhao, Front. Pharmacol. (2020). https://doi.org/10.3389/fphar.2020.00531

    Article  PubMed  PubMed Central  Google Scholar 

  41. T. T. Chen, T. Y. Huang, M. Y. Li, J. Cui, Y. Hua, Q., H. Q. Xu, Acta Pharm Sin. (2020) https://doi.org/10.16438/j.0513-4870.2019-0773

  42. X.N. Sang, X.D. Wan, H. Zhang, J.L. Ying, L. Wang, Q. Yang, Q.Y. Shan, M. Hao, M.J. Qin, Q.T. Zheng, Q. Chen, X. Han, G. Cao, J Ethnopharmacol. (2023). https://doi.org/10.1016/j.jep.2022.115821

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the experimental support from the Public Platform of Pharmaceutical Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University. This work was supported by the National Natural Science Foundation of China (No. 82073956), Zhejiang Provincial Natural Science Foundation of China (LQ22H270004, LGC20B050010), Zhejiang Provincial Medicine and Health Science and Technology Plan Project (2022490995), Zhejiang Province Traditional Chinese Medicine Science and Technology Project (2023ZF087), Zhejiang Chinese Medical University Research Foundation (2021ZR08, 2020ZG23), and Zhejiang students’ technology and innovation program (2022R410A025).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the ideas of the whole study. Conceptualization: P.L.Q., X.Y.M., H.Q.L.; writing—original draft preparation: Q.W.; data collection, and analysis: Q.W., M.L.S., W.F.J., J.L.Y., X.R.W.; writing—review and editing: X.Y.M., B.J.Y., H.Q.L., B.Q.H., Y.J.S.; funding acquisition B.J.Y., X.Y.M, B.Q.H, X.R.W.

Corresponding authors

Correspondence to Xiongyu Meng or Luping Qin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval

All animal operations were performed in accordance with the Guide for the Care and Use of Laboratory Animals (Publication No. 80-23, revised 1996) and approved by the Animal Ethics Committee of Zhejiang University of Traditional Chinese Medicine, China (Laboratory Animal Ethics No. 11766).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, H., You, J. et al. An integrated strategy of spectrum–effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. ANAL. SCI. 39, 1233–1247 (2023). https://doi.org/10.1007/s44211-023-00334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00334-4

Keywords

Navigation