Skip to main content
Log in

Study on the classification and identification of various carbonate and sulfate mineral medicines based on Raman spectroscopy combined with PCA-SVM algorithm

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The efficacy of mineral medicines varies greatly between different origins. Therefore, investigating a method to quickly identify similar mineral medicines is meaningful. In this paper, a visual classification and identification model of Raman spectroscopy combined with principal component analysis (PCA) and support vector machine (SVM) algorithms was developed to rapidly classify and identify carbonate and sulfate mineral medicines. The results reveal that although the Raman spectra are too similar to distinguish by naked eye, the PCA-SVM algorithm can perform accurate classification and identification, and its accuracy, precision, recall and F1-score parameters all reach 100%. The proposed method is rapid, accurate, nondestructive, convenient, portable, and low cost, and has important application value for the classification, identification and quality supervision of various carbonate and sulfate mineral medicines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Data available on request from the authors.

References

  1. O.W.L. Carter, Y. Xu, P.J. Sadler, Minerals in biology and medicine. RSC Adv. 11, 1939–1951 (2021)

    Article  CAS  Google Scholar 

  2. Y. Liu, X. Li, C. Chen, A. Leng, J. Qu, Effect of mineral excipients on processing traditional Chinese medicines: an insight into the components, pharmacodynamics and mechanism. Chin. Med. 16, 143 (2021)

    Article  Google Scholar 

  3. X. Zhong, Z. Di, Y. Xu, Q. Liang, K. Feng, Y. Zhang, L. Di, R. Wang, Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin. Med. 17, 21 (2022)

    Article  Google Scholar 

  4. W. Chen, Y. Yang, K. Fu, D. Zhang, Z. Wang, Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Front. Pharmacol. 13, 891273 (2022)

    Article  CAS  Google Scholar 

  5. F. Hu, N. Gong, L. Zhang, Y. Lu, P. Zhang, X. Xiao, L. Liao, Quantitative analysis of trace level asbestos in pharmaceutical talc by powder X-ray diffraction. Anal. Methods 6, 1862–1867 (2014)

    Article  CAS  Google Scholar 

  6. M. Lei, L. Chen, B. Huang, K. Chen, Determination of magnesium oxide content in mineral medicine talcum using near-infrared spectroscopy integrated with support vector machine. Appl. Spectrosc. 71, 2427–2436 (2017)

    Article  CAS  Google Scholar 

  7. A. Virgilio, J.A. Nóbrega, J.F. Rêgo, J.A.G. Neto, Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants. Spectrochim. Acta Part B 78, 58–61 (2012)

    Article  CAS  Google Scholar 

  8. C. Zhang, J. Su, Application of near infrared spectroscopy to the analysis and fast quality assessment of traditional Chinese medicinal products. Acta Pharmaceutica Sinica B 4, 182–192 (2014)

    Article  Google Scholar 

  9. S. Zhang, D. Jie, H. Zhang, In NIR spectroscopy identification of persimmon varieties based on PCA-SVM. Comput. Comput. Technol. Agric. IV 345, 118–123 (2011)

    Google Scholar 

  10. K.J.I. Ember, M.A. Hoeve, S.L. McAughtrie, M.S. Bergholt, B.J. Dwyer, M.M. Stevens, K. Faulds, S.J. Forbes, C.J. Campbell, Raman spectroscopy and regenerative medicine: a review. npj Regener. Med. 2, 12 (2017)

    Article  Google Scholar 

  11. D.-D. Chen, X.-F. Xie, H. Ao, J.-L. Liu, C. Peng, Raman spectroscopy in quality control of Chinese herbal medicine. J. Chin. Med. Assoc. 80, 288–296 (2017)

    Article  Google Scholar 

  12. Q. Bao, H. Zhao, S. Han, C. Zhang, W. Hasi, Surface-enhanced Raman spectroscopy for rapid identification and quantification of Flibanserin in different kinds of wine. Anal. Methods 12, 3025–3031 (2020)

    Article  CAS  Google Scholar 

  13. B. Li, Y. Wu, Z. Wang, M. Xing, W. Xu, Y. Zhu, P. Du, X. Wang, H. Yang, Non-invasive diagnosis of Crohn’s disease based on SERS combined with PCA-SVM. Anal. Methods 13, 5264–5273 (2021)

    Article  CAS  Google Scholar 

  14. S. Lin, W. Hasi, S. Han, X. Lin, L. Wang, A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal. Methods 12, 2571–2579 (2020)

    Article  CAS  Google Scholar 

  15. Y. Tian, Y. Sun, Y. Wang, X. Li, D. Zhu, Development of a handheld system for liquor authenticity detection based on laser spectroscopy technique. J. Spectrosc. 2022, 4404749 (2022)

    Google Scholar 

  16. W.J.B. Dufresne, C.J. Rufledt, C.P. Marshall, Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J. Raman Spectrosc. 49, 1999–2007 (2018)

    Article  CAS  Google Scholar 

  17. M. W. Y. L. H. W. Y. H. C. Z. J. X. D. W. B. Y. J. R. I. o. E.-C. M. T. C. M. B. o. L.-W. Ge and S. Terahertz. Photonics. (2022).

  18. J. Ming, L. Chen, Y. Cao, C. Yu, B.-S. Huang, K.-L. Chen, Rapid identification of nine easily confused mineral traditional Chinese medicines using Raman spectroscopy based on support vector machine. J. Spectrosc. 2019, 6967984 (2019)

    Google Scholar 

  19. V. Profant, C. Johannessen, E.W. Blanch, P. Bouř, V. Baumruk, Effects of sulfation and the environment on the structure of chondroitin sulfate studied via Raman optical activity. Phys. Chem. Chem. Phys. 21, 7367–7377 (2019)

    Article  CAS  Google Scholar 

  20. E. Bobocioiu, R. Caracas, Stability and spectroscopy of Mg sulfate minerals: role of hydration on sulfur isotope partitioning. Am. Mineral. 99, 1216–1220 (2014)

    Article  Google Scholar 

  21. J. Qiu, X. Li, X. Qi, Raman spectroscopic investigation of sulfates using mosaic grating spatial heterodyne Raman spectrometer. IEEE Photonics J. 11, 1–12 (2019)

    Google Scholar 

  22. J.J. Wylde, G.C. Allen, I.R. Collins, FT-IR and Raman spectroscopic characterization of the major oilfield sulfate scale forming minerals. Appl. Spectrosc. 55, 1155–1160 (2001)

    Article  CAS  Google Scholar 

  23. D.J. da Silva, D.F. Parra, H. Wiebeck, Applying confocal Raman spectroscopy and different linear multivariate analyses to sort polyethylene residues. Chem. Eng. J. 426, 131344 (2021)

    Article  Google Scholar 

  24. A. Duconseille, C. Gaillard, V. Santé-Lhoutellier, T. Astruc, Molecular and structural changes in gelatin evidenced by Raman microspectroscopy. Food Hydrocolloids 77, 777–786 (2018)

    Article  CAS  Google Scholar 

  25. E.R.K. Neo, Z. Yeo, J.S.C. Low, V. Goodship, K. Debattista, A review on chemometric techniques with infrared, Raman and laser-induced breakdown spectroscopy for sorting plastic waste in the recycling industry. Resour. Conserv. Recycl. 180, 106217 (2022)

    Article  CAS  Google Scholar 

  26. X. Huang, D. Song, J. Li, J. Qin, D. Wang, J. Li, H. Wang, S. Wang, Validating multivariate classification algorithms in Raman spectroscopy-based osteosarcoma cellular analysis. Anal. Lett. 55, 1052–1067 (2022)

    Article  CAS  Google Scholar 

  27. H. Jin, H. Li, Z. Yin, Y. Zhu, A. Lu, D. Zhao, C. Li, Application of Raman spectroscopy in the rapid detection of waste cooking oil. Food Chem. 362, 130191 (2021)

    Article  CAS  Google Scholar 

  28. S. Chen, C. Gao, P. Zhang. Incorporation of data-mined knowledge into black-box SVM for interpretability (2022).

  29. S. Chen, H. Lin, H. Zhang, F. Guo, S. Zhu, X. Cui, Z. Zhang, Identifying functioning and nonfunctioning adrenal tumors based on blood serum surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 413, 4289–4299 (2021)

    Article  CAS  Google Scholar 

  30. H. Sun, G. Lv, J. Mo, X. Lv, G. Du, Y. Liu, Application of KPCA combined with SVM in Raman spectral discrimination. Optik 184, 214–219 (2019)

    Article  CAS  Google Scholar 

  31. J. Zhou, Z. Jiang, F.L. Chung, S. Wang, Formulating ensemble learning of SVMs into a single SVM formulation by negative agreement learning. IEEE Trans. Syst. Man Cybern. Syst. 51, 6015–6028 (2021)

    Article  Google Scholar 

  32. G. L. M. S. X. H. Y. L. Y. W. Y. C. o. D. V. i. P. Bao, rsquo and A. s Disease with semi-supervised competitive learning. Biosensors. (2022).

  33. W. Hu, S. Ye, Y. Zhang, T. Li, G. Zhang, Y. Luo, S. Mukamel, J. Jiang, Machine learning protocol for surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 6026–6031 (2019)

    Article  CAS  Google Scholar 

  34. N.M. Ralbovsky, I.K. Lednev, Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem. Soc. Rev. 49, 7428–7453 (2020)

    Article  CAS  Google Scholar 

  35. W.J. Alencar, J.H. da Silva, F.I.B. de Oliveira, A. Ghosh, D.L.M. Vasconcelos, J.A.S. da Silva, C.R.D. de Freitas, T.A. de Moura, F.M. Rufino, P.T.C. Freire, Vibrational spectroscopy, X-ray diffraction and EDS applied to reveal the fossilization pathways of fossil shells from the Jandaíra Formation, Upper Cretaceous Northeast Brazil. Vib. Spectrosc. 123, 103430 (2022)

    Article  CAS  Google Scholar 

  36. M.C. Caggiani, A. Coccato, G. Barone, C. Finocchiaro, M. Fugazzotto, G. Lanzafame, R. Occhipinti, A. Stroscio, P. Mazzoleni, Raman spectroscopy potentiality in the study of geopolymers reaction degree. J. Raman Spectrosc. 53, 617–629 (2022)

    Article  CAS  Google Scholar 

  37. T.M. DeCarlo, Characterizing coral skeleton mineralogy with Raman spectroscopy. Nat. Commun. 9, 5325 (2018)

    Article  Google Scholar 

  38. E. Garcia-Anton, S. Cuezva, Á. Fernandez-Cortes, J. Cuevas-Gonzalez, M.C. Munoz-Cervera, D. Benavente, S. Sanchez-Moral, J.C. Canaveras, Mineral-variations study of canelobre cave phosphate stalactites by Raman and luminescence methods. Spectrosc. Lett. 44, 539–542 (2011)

    Article  CAS  Google Scholar 

  39. E. Platania, N.L.W. Streeton, H. Kutzke, A. Karlsson, E. Uggerud, N.H. Andersen, Infrared, Raman and computational study of a crystalline mononuclear copper complex of relevance to the pigment Verdigris. Vib. Spectrosc. 97, 66–74 (2018)

    Article  CAS  Google Scholar 

  40. D. Seol, Y. Ma, K. Nam, H. Chung, A study on Raman spectroscopic scheme enabling fast and accurate determination of calcite concentration in gypsum. Microchem. J. 172, 106913 (2022)

    Article  CAS  Google Scholar 

  41. G. Lopez-Reyes, P. Sobron, C. Lefebvre, F. Rull, What Lurks in the martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates. Multivariate Anal. Raman Spectra Identif. Sulfates Implic. ExoMars 99, 1570–1579 (2014)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 82160806 and 31871873) and Inner Mongolia Autonomous Region Natural Science Foundation of China (Grant No. 2022MS08064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulan Zhang, Meiling Feng or Wuliji Hasi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Jin, Z., Deji, D. et al. Study on the classification and identification of various carbonate and sulfate mineral medicines based on Raman spectroscopy combined with PCA-SVM algorithm. ANAL. SCI. 39, 241–248 (2023). https://doi.org/10.1007/s44211-022-00224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00224-1

Keywords

Navigation