Skip to main content
Log in

Effects of Ionizing Radiation on Biopolymers for Applications as Biomaterials

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Biopolymers, including extracellular matrix proteins and polysaccharides, are used as substrates for cell culture and scaffolds in tissue engineering. Ionizing radiation, for example with gamma rays or electron beams, is used to sterilize materials and to modify the physical and chemical properties of materials. The principles of the effect of ionizing radiation on biopolymers are discussed in this review article. Among the types of ionizing radiation, gamma rays and electron beams are widely used to sterilize biomaterials and construct medical devices. Water molecules are split by irradiation with ionizing radiation to give hydrated electrons, proton radicals and hydroxyl radicals. These reactive molecular species react with polymer chains to provoke scission or crosslinking reactions. Both the scission and crosslinking of the polymer chains can occur, depending on the types of polymer and irradiation conditions. Sterilization of materials is necessary if they are used in medical devices and implants. The advantages and disadvantages of ionizing radiation in comparison with other methods of sterilization are also discussed. Irradiations with strong gamma rays on the three types of biopolymers—Type I collagen, wool keratin and alginate—are described as examples of biopolymers. Ionizing radiation is a very useful tool for sterilizing materials and constructing medical devices, but it is important that we know its merits and demerits, as well as the limitations, safety and risks, of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Shoulders, R.T. Raines, Collagen structure and stability. Ann. Rev. Biochem. 78, 929–958 (2009). https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  Google Scholar 

  2. M. Meyer, Processing of collagen based biomaterials and the resulting materials properties. BioMed. Eng. Online 18, 24 (2019). https://doi.org/10.1186/s12938-019-0647-0

    Article  Google Scholar 

  3. R.C. Marshall, D.F.G. Orwin, J.M. Gillespie, Structure and biochemistry of mammalian hard keratin. Electron Microsc. Rev. 4, 47–83 (1991). https://doi.org/10.1016/0892-0354(91)90016-6

    Article  CAS  Google Scholar 

  4. S. Feroz, N. Muhammad, J. Ratnayake, G. Dias, Keratin-based materials for biomedical applications. Bioactive Mater. 5, 496–509 (2020). https://doi.org/10.1016/j.bioactmat.2020.04.007

    Article  Google Scholar 

  5. X. Guo, Y. Wang, Y. Qin, P. Shen, Q. Peng, Structures, properties and application of alginic acid: a review. Int. J. Biol. Macromol. 162, 618–628 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.180

    Article  CAS  Google Scholar 

  6. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  7. K. Teng, Q. An, Y. Chen, Y. Zhang, Y. Zhao, Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses. ACS Biomat. Sci. Eng. 7, 1302–1337 (2021). https://doi.org/10.1021/acsbiomaterials.1c00116

    Article  CAS  Google Scholar 

  8. A.D. Theocharis, S.S. Skandalis, C. Gialeli, N.K. Karamanos, Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016). https://doi.org/10.1016/j.addr.2015.11.001

    Article  CAS  Google Scholar 

  9. M. Bachmann, S. Kukkurainen, V. Hytönen, B. Wehrle-Haller, Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699 (2019). https://doi.org/10.1152/physrev.00036.2018

    Article  CAS  Google Scholar 

  10. L. Eckhart, S. Lippens, E. Tschachler, W. Declercq, Cell death by cornification. Biochim. Biophys. Acta 1833, 3471–3480 (2013). https://doi.org/10.1016/j.bbamcr.2013.06.010

    Article  CAS  Google Scholar 

  11. S. Kou, L.M. Peters, M.R. Mucalo, Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 169, 85–94 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.005

    Article  CAS  Google Scholar 

  12. M.K. Lauer, R.C. Smith, Recent advances in starch-based films toward food packaging applications: physicochemical, mechanical, and functional properties. Comprehens. Rev. Food Sci. Food Safe. 19, 3031–3083 (2020). https://doi.org/10.1111/1541-4337.12627

    Article  CAS  Google Scholar 

  13. I. Sulaeva, U. Henninges, T. Rosenau, A. Potthast, Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnol. Adv. 33, 1547–1571 (2015). https://doi.org/10.1016/j.biotechadv.2015.07.009

    Article  CAS  Google Scholar 

  14. Y. Sasakura, Cellulose production and the evolution of the sessile lifestyle in ascidians. Sessile Organisms 35(2), 21–29 (2018). https://doi.org/10.4282/sosj.35.21

    Article  Google Scholar 

  15. R.J. Hickey, A.E. Pelling, Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 7, 45 (2019). https://doi.org/10.3389/fbioe.2019.00045

    Article  Google Scholar 

  16. X. Jing, Y. Sun, X. Ma, H. Hu, Marine polysaccharides: green and recyclable resources as wound dressings. Mater. Chem. Front. 5, 5595–5616 (2021). https://doi.org/10.1039/d1qm00561h

    Article  CAS  Google Scholar 

  17. T.K. Rajab, T.J. O’Malley, V. Tchantchaleishvili, Decellularized scaffolds for tissue engineering: current status and future perspective. Artif. Organs 44, 1031–1043 (2020). https://doi.org/10.1111/aor.13701

    Article  Google Scholar 

  18. T. Ota, S. Taketani, S. Iwai, S. Miyagawa, M. Furuta, M. Hara, E. Uchimura, Y. Okita, Y. Sawa, Novel method of decellularization of porcine valves using polyethylene glycol and gamma irradiation. Ann. Thorac. Surg. 83, 1501–1507 (2007). https://doi.org/10.1016/j.athoracsur.2006.11.083

    Article  Google Scholar 

  19. M. Tao, T. Ao, X. Mao, X. Yan, R. Javed, W. Hou, Y. Wang, C. Sun, S. Lin, T. Yu, Q. Ao, Sterilization and disinfection methods for decellularized matrix materials: review, consideration and proposal. Bioactive Mater. 6, 2927–2945 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.010

    Article  CAS  Google Scholar 

  20. R. Singh, M.J. Bathaei, E. Istif, L. Beker, A review of bioresorbable implantable medical devices: materials, fabrication, and implementation. Adv. Healthcare Mater. 9, 2000790 (2020). https://doi.org/10.1002/adhm.202000790

    Article  CAS  Google Scholar 

  21. A. Eriksson, J. Burcharth, J. Rosenberg, Animal derived products may conflict with religious patients’ beliefs. BMC Med. Ethics 14, 48 (2013). https://doi.org/10.1186/1472-6939-14-48

    Article  Google Scholar 

  22. D. Goyal, A. Goyal, M. Brittberg, Consideration of religious sentiments while selecting a biological product for knee arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 21, 1577–1586 (2013). https://doi.org/10.1007/s00167-012-2292-z

    Article  Google Scholar 

  23. A. Fertala, Three decades of research on recombinant collagens: reinventing the wheel or developing new biomedical products? Bioengineering 7, 155 (2020). https://doi.org/10.3390/bioengineering7040155

    Article  CAS  Google Scholar 

  24. W.Q. Sun, P. Leung, Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 4, 817–826 (2008). https://doi.org/10.1016/j.actbio.2008.02.006

    Article  Google Scholar 

  25. R.J. Tuieng, S.H. Cartmell, C. Kirwan, M.J. Sherratt, The effects of ionizing and non-ionising electromagnetic radiation on extracellular matrix proteins. Cells 10, 3041 (2021). https://doi.org/10.3390/cells10113041

    Article  CAS  Google Scholar 

  26. M. Ferry, Y. Ngono, Energy transfer in polymers submitted to ionizing radiation: a review. Rad. Phys. Chem. 180, 109320 (2021). https://doi.org/10.1016/j.radphyschem.2020.109320

    Article  CAS  Google Scholar 

  27. 1.3 Types of radiation, in Handbook of Radiation Effects, 2nd Edition, (Eds. by Andrew Holmes-Siedle, Len Adams), 2002, Oxford University Press, pp. 3.

  28. https://www.epa.gov/radiation/radiation-basics#typesofionizing

  29. Basic Knowledge of Radiation and Radioisotopes (2019) (Scientific Basis, Safe Handling of Radioisotopes and Radiation Protection), Japan Radioisotope Association (JRIA), https://ebook.wisebook4.jp/html/jriasebook/32939/#0

  30. https://www.bbc.co.uk/bitesize/guides/zt9s2nb/revision/3

  31. https://www.nrc.gov/about-nrc/radiation/health-effects/radiation-basics.html#gamma-x

  32. Katia Aparecida da Silva Aquino: Sterilization by gamma irradiation, in Gamma Radiation (F. Adrovic eds., 2012, InTech) pp.171–206. https://www.intechopen.com/chapters/32842

  33. https://www.iaea.org/topics/medical-sterilization

  34. Mehta, K.: Gamma irradiations for radiation sterilization, in Trends in Radiation Sterilization of Health Care Products, (Eds. by International Atomic Energy Agency (IAEA) 2008) pp. 5–25. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  35. Chmielewski, A.G., Sadat, T., Zimek, Z.: Electron accelerators for radiation sterilization, in Trends in Radiation Sterilization of Health Care Products, (Eds. by International Atomic Energy Agency (IAEA) 2008) pp. 27–47. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  36. Dziedzic-Golclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., Michalik, J., Stachowicz, W.: Radiation sterilization of human tissue grafts, in Trends in Radiation Sterilization of Health Care Products, (Eds. by International Atomic Energy Agency (IAEA) 2008) pp. 231–260. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  37. Introduction to food irradiation and medical sterilization, L. McKeen, in The Effect of Sterilization on Plastics and Elastomers (3rd edition). 2012), pp. 1–40. https://doi.org/10.1016/B978-1-4557-2598-4.00001-0

  38. https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/sterilization-medical-devices

  39. H.A. Schwarz, Applications of the spur diffusion model to the radiation chemistry of aqueous solutions. J. Phys. Chem. 73, 1928–1937 (1969). https://doi.org/10.1021/j100726a047

    Article  CAS  Google Scholar 

  40. C. Chatgilialoglu, C. Ferreri, Reductive stress of fulfur-containg amino acids within proteins and implication of tamdem protein-lipid damage. Mol. Sci. 22, 12863 (2021). https://doi.org/10.3390/ijms222312863

    Article  CAS  Google Scholar 

  41. A.T. Naikwadi, B.K. Sharma, K.D. Bhatt, P.A. Mahanwar, Gamma radiation processed polymeric materials for high performance applications: a review. Front. Chem. 10, 837111 (2022). https://doi.org/10.3389/fchem.2022.837111

    Article  CAS  Google Scholar 

  42. A. Ashfaq, M.-C. Clochard, X. Coqueret, C. Dispenza, M.S. Driscoll, P. Ulański, M. Al-Sheikhly, Polymerization reactons and modifications of polymers by ionizing radiation. Polymers 12, 2877 (2020). https://doi.org/10.3390/polym12122877

    Article  CAS  Google Scholar 

  43. A. Charlesby, Radiation mechanisms in polymers. Adv. Chem. 66, 1–21 (1967). https://doi.org/10.1021/ba-1967-0066.ch001

    Article  Google Scholar 

  44. G. Xu, M.R. Chance, Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal. Chem. 77, 4549–4555 (2005). https://doi.org/10.1021/ac050299

    Article  CAS  Google Scholar 

  45. Y. Tomoda, M. Tsuda, The importance of hydroxyl radicals as intermediates in the cross-linking of high polymers by γ-irradiation. Nature 190, 905 (1961). https://doi.org/10.1038/190905a0

    Article  CAS  Google Scholar 

  46. D.I. Pattinson, A.S. Rahmanto, M.J. Davies, Photo-oxidation of proteins. Photochem. Photobiol. Sci. 11, 38–53 (2012). https://doi.org/10.1039/C1PP05164D

    Article  Google Scholar 

  47. M.J. Davies, The oxidative environment and protein damage. Biochim. Biophys. Acta 1703, 93–109 (2005). https://doi.org/10.1016/j.bbapap.2004.08.007

    Article  CAS  Google Scholar 

  48. W.M. Garrison, Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87, 381–398 (1987). https://doi.org/10.1021/cr00078a006

    Article  CAS  Google Scholar 

  49. M. Hara, N. Koshimizu, M. Yoshida, I.J. Haug, A.-S.T. Ulset, B.T. Christensen, Cross-linking and depolymerisation of γ-irradiated fish gelatin and porcine gelatin studied by SEC-MALLS and SDS-PAGE: a comparative study. J. Biomater. Sci. Polym. Edn. 21, 877–892 (2010). https://doi.org/10.1163/156856209X449452

    Article  CAS  Google Scholar 

  50. C.L. Hawkins, M.J. Davies, Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 1504, 196–219 (2001). https://doi.org/10.1016/s0005-2728(00)00252-8

    Article  CAS  Google Scholar 

  51. M.J. Davies, Protein oxidation and peroxidataion. Biochem. J. 473, 805–825 (2016). https://doi.org/10.1042/BJ20151227

    Article  CAS  Google Scholar 

  52. J.M. Gebicki, T. Nauser, Initiation and prevention of biological damage by radiation-generated protein radicals. Int. J. Mol. Sci. 23, 396 (2022). https://doi.org/10.3390/ijms23010396

    Article  CAS  Google Scholar 

  53. J.M. Gebicki, Oxidative stress, free radicals and protein peroxides. Arch. Biochem. Biphys. 595, 33–39 (2016). https://doi.org/10.1016/j.abb.2015.10.021

    Article  CAS  Google Scholar 

  54. C. Houée-Levin, K. Bobrowski, The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J. Proteomics 92, 51–62 (2013). https://doi.org/10.1016/j.jprot.2013.02.014

    Article  CAS  Google Scholar 

  55. H.-Y. Song, K. Kim, J.M. Han, W.Y. Park, H.S. Seo, S. Lim, E.-B. Byun, Ionizing technology to improve the physicochemical and biological properties of natural compounds by molecular modification: a review. Rad. Phys. Chem. 194, 110013 (2022). https://doi.org/10.1016/j.radphyschem.2022.110013

    Article  CAS  Google Scholar 

  56. J.A. Reisz, N. Bansal, J. Qian, J. Zhao, C.M. Furdui, Effects of ionizing radiation on biological molecules-mehcanisms of damage and emerging methods of detection. Antiox. Red. Signal. 21(2), 260–292 (2014). https://doi.org/10.1089/ars.2013.5489

    Article  CAS  Google Scholar 

  57. Adams, G.E., Boag, J.W., Currant, J., Michael, B.D. in: Pulse Radiolysis, M. Ebert, J. P. Keene, A. J. Swallow and J. H. Baxendale (Eds), p. 131. Academic Press, San Diego, CA (1965).

  58. A.-S.T. Ulset, H. Mori, M.Ø. Dalheim, M. Hara, B.E. Christensen, Influence of amino acids, buffers, and pH on the γ-Irradiation-induced degradation of alginates. Biomacromol. 15(12), 4590–4597 (2014). https://doi.org/10.1021/bm501386n

    Article  CAS  Google Scholar 

  59. N. Inoue, M. Bessho, M. Furuta, T. Kojima, S. Okuda, M. Hara, A novel collagen hydrogel cross-linked by gamma-ray irradiation in acidic pH conditions. J. Biomater. Sci. Polym. Edn. 17, 837–858 (2006). https://doi.org/10.1163/156856206777996835

    Article  CAS  Google Scholar 

  60. Scholes, G., Show, Willson, P.R.L., Ebert, M., in: Pulse Radiolysis, M. Ebert, J. P. Keene, A. J. Swallow and J. H. Baxendale (Eds), p. 151. Academic Press, San Diego, CA (1965).

  61. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988). https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  62. M. Bessho, T. Kojima, S. Okuda, M. Hara, Radiation-induced cross-linking of gelatin by using γ-rays: insoluble gelatin hydrogel formation. Bull. Chem. Soc. Jpn. 80(5), 979–985 (2007). https://doi.org/10.1246/bcsj.80.979

    Article  CAS  Google Scholar 

  63. T. Kojima, R. Taniguchi, M. Furuta, S. Okuda, M. Hara, S. Fujita, Pulse radiolysis system of OPU-LINAC in RIAST, Osaka Prefecture University. Rad. Phys. Chem. 71, 601–604 (2004). https://doi.org/10.1016/j.radphyschem.2004.03.024

    Article  CAS  Google Scholar 

  64. K. Kobayashi, Pulse radiolysis studies for mechanism in biochemical redox reactions. Chem. Rev. 119, 4413–4462 (2019). https://doi.org/10.1021/acs.chemrev.8b00405

    Article  CAS  Google Scholar 

  65. H. Mori, R. Naka, M. Fujita, M. Hara, Nylon mesh-based 3D scaffolds for the adherent culture of neural stem/progenitor cells. J. Biosci. Bioeng. 131(4), 442–452 (2021). https://doi.org/10.1016/j.jbiosc.2020.12.003

    Article  CAS  Google Scholar 

  66. R. Galante, T.J.A. Pinto, R. Calaço, P. Serro, Sterilization of hydrogels for biomedical applications: a review. J. Biomed. Mater. Res. Part B 106B, 2472–2492 (2018). https://doi.org/10.1002/jbm.b.34048

    Article  CAS  Google Scholar 

  67. Z. Dai, J. Ronholm, Y. Tian, B. Sethi, X. Cao, Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 7, 1–13 (2016). https://doi.org/10.1177/2041731416648810

    Article  CAS  Google Scholar 

  68. A. Dziedzic-Goclawska, A. Kaminski, I. Uhrynowska-Tyszkiewicz, W. Stachowicz, Irradiation as as a safety procedure in tissue banking. Cell Tissue Bank. 6, 201–219 (2005). https://doi.org/10.1007/s10561-005-0338-x

    Article  CAS  Google Scholar 

  69. Medical devices containing materials derived from animal sources (Except for in vitro diagnostic devices) Guidance for industry and food and drug administration staff. FDA-2013-D-1574 (2019). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/medical-devices-containing-materials-derived-animal-sources-except-in-vitro-diagnostic-devices

  70. G.C. Soares, D.A. Learmonth, M.C. Vallejo, S.P. Davila, P. González, R.A. Souza, A.L. Oliveira, Supercritical CO2 technology: the next standard sterilization techniques? Mater. Sci. Eng. C 99, 520–540 (2019). https://doi.org/10.1016/j.msec.2019.01.121

    Article  CAS  Google Scholar 

  71. A. Sakudo, Y. Yagyu, T. Onodera, Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 20, 5216 (2019). https://doi.org/10.3390/ijms20205216

    Article  CAS  Google Scholar 

  72. Tankeshwar, A.: Radiation sterilization: types, mechanism, applications, in General Microbiology. https://microbeonline.com/radiation-sterilization-types-mechanism-applications/

  73. R.A. Wach, H. Mitomo, N. Nagasawa, F. Yoshii, Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Rad. Phys. Chem. 68, 771–779 (2001). https://doi.org/10.1016/S0969-806X(03)00403-1

    Article  CAS  Google Scholar 

  74. I.V. Yannas, Collagen and gelatin in the solid state. J. Macromol. Sci. Part C 87, 49–106 (1972). https://doi.org/10.1080/15321797208068160

    Article  Google Scholar 

  75. K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman, Collagen fibril formation. Biochem. J. 316, 1–11 (1996). https://doi.org/10.1042/bj3160001

    Article  CAS  Google Scholar 

  76. L.H.H. Olde Damink, P.J. Dijkstra, J.A. Van Van Luyn, P.B. Wachem, P. Nieuwenhuis, J. Feijen, Glutaradlehyde as a crsslinkg agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6, 460–472 (1995). https://doi.org/10.1007/BF00123371

    Article  CAS  Google Scholar 

  77. S. Yunoki, N. Nagai, T. Suzuki, M. Munekata, Novel biomaterial from reinforced salmon collagen gel prepared by fibril formation and cross-linking. J. Biosci. Bioeng. 98, 40–47 (2004). https://doi.org/10.1016/S1389-1723(04)70240-6

    Article  CAS  Google Scholar 

  78. F. Bode, M.A. da Silva, A.F. Drake, S.B. Ross-Murphy, C.A. Dreiss, Enzymatically cross-linked Tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromol 12, 3741–3752 (2011). https://doi.org/10.1021/bm2009894

    Article  CAS  Google Scholar 

  79. X. Chen, L. Zhou, H. Xu, M. Yamamoto, M. Shinoda, M. Kishimoto, T. Tanaka, H. Yamane, Effect of the application of a dehydrothermal treatment on the structure and the mechanical properties of collagen film. Materials 13, 377 (2020). https://doi.org/10.3390/ma13020377

    Article  CAS  Google Scholar 

  80. H. Mori, M. Hara, UV irradiation of Type I collagen gels changed the morphology of the interconnected brain capillary endothelial cells on them. Mater. Sci. Eng. C 112, 110907 (2020). https://doi.org/10.1016/j.msec.2020.110907

    Article  CAS  Google Scholar 

  81. H. Mori, K. Shimizu, M. Hara, Dynamic viscoelastic properties of collagen gels in the presence and absence of collagen fibrils. Mater. Sci. Eng. C 32, 2007–2016 (2012). https://doi.org/10.1016/j.msec.2012.05.022

    Article  CAS  Google Scholar 

  82. F. Cataldo, O. Ursini, E. Lilla, G. Angelini, Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J. Radioanal. Nucl. Chem. 275, 125–131 (2008). https://doi.org/10.1007/s10967-007-7003-8

    Article  CAS  Google Scholar 

  83. J.H. Bowes, J.A. Moss, The effect of gamma radiation on collagen. Rad. Res. 16, 211–223 (1962). https://doi.org/10.2307/3571153

    Article  CAS  Google Scholar 

  84. V. Moise, S. Vasilca, A. Baltac, C. Pintilie, M. Virgolici, M. Cutrubinis, C. Kamerzan, D. Dragan, M. Ene, F. Albolta, S. Maier, Physicochemical study for characterization of lyophilized collagens irradiated with gamma radiation and for optimization of medical device manufacturing process. Rad. Phys. Chem. 170, 108658 (2020). https://doi.org/10.1016/j.radphyschem.2019.108658

    Article  CAS  Google Scholar 

  85. Adams, S.: Names of animals that give wool, in https://animals.mom.com/names-animals-give-wool-5426.html

  86. J.E. Plowman, D.P. Harland, A.M.O. Campos, S.R. Silva, A. Thomas, J.A. Vernon, C. van Koten, C. Hefer, S. Clerens, A.M. de Almeida, The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. J. Proteomics. 225, 103853 (2020). https://doi.org/10.1016/j.jprot.2020.103853

    Article  CAS  Google Scholar 

  87. J.W.S. Hearle, A critical review of the structural mechanics of wool and hair fibres. Int. J. Biol. Macromol. 27, 123–138 (2000). https://doi.org/10.1016/s0141-8130(00)00116-1

    Article  CAS  Google Scholar 

  88. J.E. Plowman, R.E. Miller, A. Thomas, A.J. Grosvenor, D.P. Harland, S. Deb-Choudhury, A detailed mapping of the readily accessible disulphide bonds in the cortex of wool fibres. Protein 89, 708–720 (2021). https://doi.org/10.1002/prot.26053

    Article  CAS  Google Scholar 

  89. T. Fujii, S. Takayama, Y. Ito, A novel purification procedure for keratin-associated proteins and keratin from human hair. J. Biol. Macromol. 13(32), 92–106 (2013). https://doi.org/10.14533/jbm.13.92

    Article  CAS  Google Scholar 

  90. J.G. Rouse, M.E. Van Dyke, A review of keratin-based biomaterials for biomedical applications. Materials 3, 999–1014 (2010). https://doi.org/10.3390/ma3020999

    Article  Google Scholar 

  91. P. Hill, H. Brantley, M.E. Van Dyke, Some properties of keratin biomaterials: kerateins. Biomaterials 31, 585–593 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.076

    Article  CAS  Google Scholar 

  92. Y. Ozaki, Y. Takagi, H. Mori, M. Hara, Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. Mater. Sci. Eng. C 42, 146–154 (2014). https://doi.org/10.1016/j.msec.2014.05.018

    Article  CAS  Google Scholar 

  93. K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, Y. Konishi, Preparation of stable solution of keratins, and physicochemical and biodegradational properties of films. J. Biomed. Mater. Res. 31, 439–444 (1996). https://doi.org/10.1002/(SICI)1097-4636(199608)31:4%3c439::AID-JBM1%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  94. R.C. de Guzman, M.R. Merrill, J.R. Richter, R.I. Hamzi, O.K. Greengauz-Roberts, M.E. Van Dyke, Mechanical and biological properties of keratose biomaterials. Biomaterials 32, 8205–8217 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.054

    Article  CAS  Google Scholar 

  95. J.R. Richter, R.C. de Guzman, M.E. Van Dyke, Mechanisms of hepatocyte attachment to keratin biomaterials. Biomaterials 32, 7555–7561 (2011). https://doi.org/10.1016/j.biomaterials.2011.06.061

    Article  CAS  Google Scholar 

  96. K.R. Millington, Comparison of the effects of gamma and ultraviolet radiation on wool keratin. Coloration Technol. JSDC 116, 266–272 (2000). https://doi.org/10.1111/j.1478-4408.2000.tb00045.x

    Article  CAS  Google Scholar 

  97. E. Leccia, A. Gourrier, J. Doucet, F. Briki, Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study. J. Struct. Biol. 170, 69–75 (2010). https://doi.org/10.1016/j.jsb.2009.11.006

    Article  CAS  Google Scholar 

  98. O. Mozziconacci, B.A. Kerwin, C. Schöneich, Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: covalent H/D exchange, radical-radical reactions, and l- and d-Ala conversion. J. Phys. Chem. B 114, 6751–6762 (2010). https://doi.org/10.1021/jp101508b

    Article  CAS  Google Scholar 

  99. R. Zhao, J. Lind, G. Merényi, T. Eriksen, Significance of the intramolecular transformation of glutathione thiyl radicals to α-aminoalkyl radicals. Thermomechanical and biological implications. J. Chem. Soc. Perkin Trans. 2, 569–574 (1997). https://doi.org/10.1039/A605727F

    Article  Google Scholar 

  100. H. Mori, M. Hara, Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. Mater. Sci. Eng. C 91, 19–25 (2018). https://doi.org/10.1016/j.msec.2018.05.021

    Article  CAS  Google Scholar 

  101. T. Andersen, B.L. Strand, K. Formo, E. Alsberg, B.E. Christensen, Alginates as biomaterials in tissue engineering, in Carbohydrate chemistry - chemical and biological approaches. ed. by A.P. Rauter, T.K. Lindhorst (The Royal Society of Chemistry, Cambridge, 2012), pp.227–258

    Google Scholar 

  102. G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 32(1), 195–198 (1973). https://doi.org/10.1016/0014-5793(73)80770-7

    Article  CAS  Google Scholar 

  103. C.H. Goh, P.W.S. Heng, L.W. Chan, Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 88(1), 1–12 (2012). https://doi.org/10.1016/j.carbpol.2011.11.012

    Article  CAS  Google Scholar 

  104. M. Hara, A. Yamaki, J. Miyake, Noninvasive detachment of cultured cells on cells. Mater. Sci. Eng. C 17, 107–112 (2012). https://doi.org/10.1016/S0928-4931(01)00317-4

    Article  Google Scholar 

  105. E. Goto, M. Mukozawa, H. Mori, M. Hara, A rolled sheet of collagen gel with cultured Schwann cells: Model of nerve conduit to enhance the neurite growth. J. Biosci. Bioeng. 109, 512–518 (2010). https://doi.org/10.1016/j.jbiosc.2009.11.002

    Article  CAS  Google Scholar 

  106. K.I. Draget, K. Østgaard, O. Smidsrød, Homogeneous alginate gels: a technical approach. Carbohyd. Polym. 14(2), 159–178 (1990). https://doi.org/10.1016/0144-8617(90)90028-q

    Article  CAS  Google Scholar 

  107. J.M. Wasikiewicz, F. Yoshii, N. Nagasawa, R.A. Wach, H. Mitomo, Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Rad. Phys. Chem. 73, 287–295 (2005). https://doi.org/10.1016/j.radphyschem.2004.09.021

    Article  CAS  Google Scholar 

  108. H.J. Kong, M.K. Smith, D.J. Mooney, Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24(22), 4023–4029 (2003). https://doi.org/10.1016/s0142-9612(03)00295-3

    Article  CAS  Google Scholar 

  109. B.L. Strand, A.E. Coron, G. Skjåk-Bræk, Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Translat. Med. 6, 1053–1058 (2017). https://doi.org/10.1002/sctm.16-0116

    Article  CAS  Google Scholar 

  110. R. Mhanna, A. Kashyap, G. Plazzolo, Q. Vallmajo-Martin, J. Becher, S. Möller, M. Schnabelrauch, M. Zenobi-Wong, Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng. Part A 20, 1454–1464 (2014). https://doi.org/10.1089/ten.tea.2013.0544

    Article  CAS  Google Scholar 

  111. X. Gao, C. Guo, J. Hao, Z. Zao, H. Long, M. Li, Adsorption of heavy metal ions by sodium alginate adsorbent-a review and new perspective. Int. J. Biol. Macromol. 164, 4423–4434 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  Google Scholar 

  112. G. Cao, Y. Huang, K. Li, Y. Fan, H. Xie, X. Li, Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J. Mater. Chem. B 7, 5038–5055 (2019). https://doi.org/10.1039/c9tb00530g

    Article  CAS  Google Scholar 

  113. C. Xiong, P. Li, Q. Luo, J. Yan, J. Zhang, X. Jin, W. Huang, Effect of γ-irradiation on the structure and antioxidant activity of polysaccharide isolated from the fruiting bodies of Morchella sextelata. Biosci. Rep. 40, 22 (2020). https://doi.org/10.1042/BSR20194522

    Article  Google Scholar 

  114. L. Ren, X. Wang, S. Li, J. Li, X. Zhu, L. Zhang, F. Gao, G. Zhou, Effect of gamma irradiation on structure, physicochemical and immunomodulatory properties of Astragalus polysaccharides. Int. J. Biol. Macromol. 120, 641–649 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.138

    Article  CAS  Google Scholar 

  115. D. He, L. Yan, X. Ma, Y. Cheng, S. Wu, J. Zuo, E.-J. Park, J. Liu, M. Wu, J.-I. Choi, H. Tong, Gamma-irradiation degraded sulfated polysaccharide from a new red algal strain Pyropia yezoensis Sookwawon 104 with in vitro antiproliferative activity. Oncol. Lett. 20, 91 (2020). https://doi.org/10.3892/ol.2020.11952

    Article  CAS  Google Scholar 

  116. J.-I. Choi, H.-J. Kim, J.-H. Kim, J.-W. Lee, Enhanced biological activities of laminarin degraded by gamma-ray irradiation. J. Food Biochem. 36, 465–469 (2012). https://doi.org/10.1111/j.1745-4514.2011.00552.x

    Article  CAS  Google Scholar 

  117. J.-I. Choi, H.-J. Kim, Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydr. Polym. 97, 358–362 (2013). https://doi.org/10.1016/j.carbpol.2013.05.002

    Article  CAS  Google Scholar 

  118. E.-B. Byun, S.-H. Park, B.-S. Jang, N.-Y. Sung, E.-H. Byun, Gamma-irradiated β-glucan induces immunomodulation and anticancer activity through MAPK and NF-κB pathways. J. Sci. Food Agric. 96, 695–702 (2016). https://doi.org/10.1002/jsfa.7215

    Article  Google Scholar 

  119. L.V. Abad, F.B. Aurigue, L.S. Relleve, D.R.V. Montefalcon, G.E.P. Lopez, Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter. Rad. Phys. Chem. 118, 75–80 (2016). https://doi.org/10.1016/j.radphyschem.2015.03.001

    Article  CAS  Google Scholar 

  120. Y.-C. Huang, K.-Y. Huang, W.-Z. Lew, K.-H. Fan, W.-J. Chang, H.-M. Huang, Gamma-irradiation-prepared low molecular weight hyaluronic acid promotes skin wound healing. Polymers 11, 1214 (2019). https://doi.org/10.3390/polym11071214

    Article  CAS  Google Scholar 

  121. A.S. Sokhey, M.A. Hanna, Properties of irradiated starches. Food Struct. 12, 397–410 (1993). https://digitalcommons.usu.edu/foodmicrostructure/vol12/iss4/2

    CAS  Google Scholar 

  122. C. Tissot, S. Grdanovska, A. Barkatt, J. Silverman, M. Al-Sheikhly, On the mechanisms of the radiation-induced degradation of cellulosic substances. Rad. Phys. Chem. 84, 185–190 (2013). https://doi.org/10.1016/j.radphyschem.2012.06.020

    Article  CAS  Google Scholar 

  123. J.M. Wasikiewicza, F. Yoshii, N. Nagasawa, R.A. Wach, H. Mitomo, Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Rad. Phys. Chem. 73, 287–295 (2005). https://doi.org/10.1016/j.radphyschem.2004.09.021

    Article  CAS  Google Scholar 

  124. B. Fei, R.A. Wach, H. Mitomo, F. Yoshii, T. Kume, Hydrogel of biodegradable cellulose derivatives/I. Radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 78, 278–283 (2000). https://doi.org/10.1002/1097-4628(20001010)78:23.0.CO;2-9

    Article  CAS  Google Scholar 

  125. M.H. Gaber, Effect of γ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng. 100, 203–206 (2005). https://doi.org/10.1263/jbb.100.203

    Article  CAS  Google Scholar 

  126. E. Marzec, Electric properties of non-irradiated and gamma-irradiated keratin. Rad. Phys. Chem. 59, 477–481 (2000). https://doi.org/10.1016/S0969-806X(00)00303-0

    Article  CAS  Google Scholar 

  127. H. Terryn, A. Maquille, C. Houee-Levin, B. Tilquin, Irradiation of human insulin in aqueous solution, first step towards radiosterilization. Int. J. Pharm. 343, 4–11 (2007). https://doi.org/10.1016/j.ijpharm.2007.04.012

    Article  CAS  Google Scholar 

  128. Y. Shi, R. Li, Z. Tu, D. Ma, H. Wang, X. Huang, N. He, Effect of γ-irradiation on the physicochemical properties and structure of fish myofibrillar proteins. Rad. Phys. Chem. 109, 70–72 (2015). https://doi.org/10.1016/j.radphyschem.2014.12.016

    Article  CAS  Google Scholar 

  129. G.H.C. Varca, G.G. Perossi, M. Grasselli, A.B. Lugão, Radiation synthesized protein-based nanoparticles: a technique overview. Rad. Phys. Chem. 105, 48–52 (2014). https://doi.org/10.1016/j.radphyschem.2014.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues at OMU and OPU, including Dr. Hideki Mori, Masakazu Furuta, Shuichi Okuda, Takao Kojima, Masahiko Bessho and other collaborators and students, for their contribution to studies on collagen, alginate and keratin described as examples in this article. I am sincerely grateful to Prof. Roger J. Narayan for giving me the opportunity to submit the manuscript.

Funding

Studies of reactive oxygen species (ROS) were partly supported by the Japan Society for the Promotion of Science KAKENHI 22K04847. Studies of collagen and alginate were supported by the Japan Food Chemical Research Foundation. Studies of keratin were supported by the Hoyu Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Hara.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Osaka Metropolitan University (OMU) was founded on April 1st, 2022 with the merging Osaka Prefecture University (OPU) and Osaka City University (OCU).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, M. Effects of Ionizing Radiation on Biopolymers for Applications as Biomaterials. Biomedical Materials & Devices 1, 587–604 (2023). https://doi.org/10.1007/s44174-022-00049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00049-6

Keywords

Navigation