Skip to main content

Advertisement

Log in

Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract 

Osteosarcoma (OS) is the most common primary bone cancer in children and young adults. This type of cancer is characterized by a high mortality rate, especially for patients with resistant lung metastases. Given its low incidence, high genetic heterogeneity, the lack of effective targets, and poor availability of relevant in vitro and in vivo models to study the tumor progression and the metastatic cascade, the pathophysiology of OS is still poorly understood and the translation of novel drugs into the market has become stagnant. Due to the importance of the tumor microenvironment (TME) in the development of metastases and the growing interest in targeting TME-specific pathways for novel therapeutics in cancer, models that closely represent these interactions are crucial for a better understanding of cancer-related events. In OS research, most studies rely on oversimplified two-dimensional (2D) assays and complex animal models that do not faithfully recapitulate OS development and progression. In turn, three-dimensional (3D) models are able to mimic not only the physical 3D environment in which cancer cells grow but also involve interactions with the TME, including its extracellular matrix, and thus are promising tools for drug screening studies. In this review, the existing and innovative OS in vitro 3D models are highlighted, focusing on how the TME is crucial to develop effective platforms for OS tumor and metastasis modeling in a physiologically relevant context.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3:221–43. https://doi.org/10.1007/s40744-016-0046-y.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Valery PC, Laversanne M, Bray F. Bone cancer incidence by morphological subtype: a global assessment. Cancer Causes Control. 2015;26:1127–39. https://doi.org/10.1007/s10552-015-0607-3.

    Article  PubMed  Google Scholar 

  3. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35. https://doi.org/10.1038/nrc3838.

    Article  CAS  PubMed  Google Scholar 

  4. Casali PG, Bielack S, Abecassis N, Aro HT, Bauer S, Biagini R, et al. Bone sarcomas: ESMO–PaedCan–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv79–95. https://doi.org/10.1093/annonc/mdy310.

    Article  CAS  PubMed  Google Scholar 

  5. Friebele JC, Peck J, Pan X, Abdel-Rasoul M, Mayerson JL. Osteosarcoma: a meta-analysis and review of the literature. Am J Orthop (Belle Mead NJ). 2015;44:547–53.

    PubMed  Google Scholar 

  6. Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells. 2020;9:976. https://doi.org/10.3390/cells9040976.

    Article  CAS  PubMed Central  Google Scholar 

  7. Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18:609–24. https://doi.org/10.1038/s41571-021-00519-8.

    Article  PubMed  Google Scholar 

  8. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32:266–77. https://doi.org/10.1152/physiol.00036.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J. 2018;16:279–87. https://doi.org/10.1016/j.csbj.2018.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:1–15. https://doi.org/10.3389/fmolb.2020.00033.

    Article  CAS  Google Scholar 

  11. Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3:159–73. https://doi.org/10.1038/s41578-018-0023-x.

    Article  CAS  Google Scholar 

  12. Liu Z, Vunjak-Novakovic G. Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Curr Opin Chem Eng. 2016;11:94–105. https://doi.org/10.1016/j.coche.2016.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials. 2016;81:135–56. https://doi.org/10.1016/j.biomaterials.2015.12.016.

    Article  CAS  PubMed  Google Scholar 

  14. Ferreira LP, Gaspar VM, Mano JF. Decellularized extracellular matrix for bioengineering physiomimetic 3D in vitro tumor models. Trends Biotechnol. 2020; 1–18. https://doi.org/10.1016/j.tibtech.2020.04.006

  15. Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116:206–26. https://doi.org/10.1002/bit.26845.

    Article  CAS  PubMed  Google Scholar 

  16. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18. https://doi.org/10.1038/s41568-018-0007-6.

    Article  CAS  PubMed  Google Scholar 

  17. Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, et al. 3D Bioprinting: from benches to translational applications. Small. 2019;15:1–47. https://doi.org/10.1002/smll.201805510.

    Article  CAS  Google Scholar 

  18. Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19:65–81. https://doi.org/10.1038/s41568-018-0104-6.

    Article  CAS  PubMed  Google Scholar 

  19. Seeley RRTDS& PT, VanPutte C, Regan J, Seeley RRTDS& PT, Stephens T, Tate P. Seeley’s anatomy & physiology. 11th Editi. New York, NY: McGraw-Hill; 2017.

  20. Martin TJ, Sims NA. RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Disord. 2015;16:131–9. https://doi.org/10.1007/s11154-014-9308-6.

    Article  CAS  PubMed  Google Scholar 

  21. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1–17. https://doi.org/10.1155/2015/421746.

    Article  CAS  Google Scholar 

  22. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561:195–200. https://doi.org/10.1038/s41586-018-0482-7.

    Article  CAS  PubMed  Google Scholar 

  23. Mutsaers AJ, Walkley CR. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone. 2014;62:56–63. https://doi.org/10.1016/j.bone.2014.02.003.

    Article  PubMed  Google Scholar 

  24. Lin Y-H, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, et al. Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol Med. 2017;23:737–55. https://doi.org/10.1016/j.molmed.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Håkelien A-M, Bryne JC, Harstad KG, Lorenz S, Paulsen J, Sun J, et al. The regulatory landscape of osteogenic differentiation. Stem Cells. 2014;32:2780–93. https://doi.org/10.1002/stem.1759.

    Article  CAS  PubMed  Google Scholar 

  26. Endo-Munoz L, Evdokiou A, Saunders NA. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta - Rev Cancer. 2012;1826:434–42. https://doi.org/10.1016/j.bbcan.2012.07.003.

    Article  CAS  Google Scholar 

  27. Abarrategi A, Tornin J, Lucia MC, Hamilton A, Enrique MC, Rodrigo JP, et al. Osteosarcoma: cells-of-origin, cancer stem cells, and targeted therapies. Stem Cells Int. 2016;2016. https://doi.org/10.1155/2016/3631764

  28. Hattinger CM, Patrizio MP, Fantoni L, Casotti C, Riganti C, Serra M. Drug resistance in osteosarcoma: emerging biomarkers, therapeutic targets and treatment strategies. Cancers (Basel). 2021;13:2878. https://doi.org/10.3390/cancers13122878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martins-Neves SR, Paiva-Oliveira DI, Wijers-Koster PM, Abrunhosa AJ, Fontes-Ribeiro C, Bovée JVMG, et al. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling. Cancer Lett. 2016;370:286–95. https://doi.org/10.1016/j.canlet.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  30. Yao Z, Han L, Chen Y, He F, Sun B, Kamar S, et al. Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis. 2018;9:701. https://doi.org/10.1038/s41419-018-0647-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danieau G, Morice S, Rédini F, Verrecchia F, Le RBB. New insights about the Wnt/β-catenin signaling pathway in primary bone tumors and their microenvironment: a promising target to develop therapeutic strategies? Int J Mol Sci. 2019;20:1–22. https://doi.org/10.3390/ijms20153751.

    Article  CAS  Google Scholar 

  32. Goldstein SD, Trucco M, Guzman WB, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7:21114–23. https://doi.org/10.18632/oncotarget.8522.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saraf AJ, Fenger JM, Roberts RD. Osteosarcoma: accelerating progress makes for a hopeful future. Front Oncol. 2018;8:1–7. https://doi.org/10.3389/fonc.2018.00004.

    Article  Google Scholar 

  34. Grignani G, Palmerini E, Ferraresi V, D’Ambrosio L, Bertulli R, Asaftei SD, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16:98–107. https://doi.org/10.1016/S1470-2045(14)71136-2.

    Article  CAS  PubMed  Google Scholar 

  35. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28. https://doi.org/10.1038/s41392-020-0134-x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fan TM, Roberts RD, Lizardo MM. Understanding and modeling metastasis biology to improve therapeutic strategies for combating osteosarcoma progression. Front Oncol. 2020;10:1–27. https://doi.org/10.3389/fonc.2020.00013.

    Article  Google Scholar 

  37. Baglio SR, Lagerweij T, Pérez-Lanzón M, Ho XD, Léveillé N, Melo SA, et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res. 2017;23:3721–33. https://doi.org/10.1158/1078-0432.CCR-16-2726.

    Article  CAS  PubMed  Google Scholar 

  38. Mazumdar A, Urdinez J, Boro A, Migliavacca J, Arlt MJE, Muff R, et al. Osteosarcoma-derived extracellular vesicles induce lung fibroblast reprogramming. Int J Mol Sci. 2020;21:5451. https://doi.org/10.3390/ijms21155451.

    Article  CAS  PubMed Central  Google Scholar 

  39. Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology. 2021;19:277. https://doi.org/10.1186/s12951-021-01028-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, et al. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci. 2015;72:3097–113. https://doi.org/10.1007/s00018-015-1918-y.

    Article  CAS  PubMed  Google Scholar 

  41. Navet B, Ando K, Vargas-Franco J, Brion R, Amiaud J, Mori K, et al. The intrinsic and extrinsic implications of RANKL/RANK signaling in osteosarcoma: from tumor initiation to lung metastases. Cancers (Basel). 2018;10:398. https://doi.org/10.3390/cancers10110398.

    Article  CAS  PubMed Central  Google Scholar 

  42. Verrecchia F, Rédini F. Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment. Front Oncol. 2018;8:1–11. https://doi.org/10.3389/fonc.2018.00133.

    Article  Google Scholar 

  43. Garimella R, Washington L, Isaacson J, Vallejo J, Spence M, Tawfik O, et al. Extracellular Membrane vesicles derived from 143B osteosarcoma cells contain pro-osteoclastogenic cargo: a novel communication mechanism in osteosarcoma bone microenvironment. Transl Oncol. 2014;7:331–40. https://doi.org/10.1016/j.tranon.2014.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2016;16:35–52. https://doi.org/10.1038/nrd.2016.193.

    Article  CAS  PubMed  Google Scholar 

  45. Pietrovito L, Leo A, Gori V, Lulli M, Parri M, Becherucci V, et al. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Molecular Oncology. 2018 659–676. https://doi.org/10.1002/1878-0261.12189

  46. Zheng Y, Wang G, Chen R, Hua Y, Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther. 2018;9:1–9. https://doi.org/10.1186/s13287-018-0780-x.

    Article  CAS  Google Scholar 

  47. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72. https://doi.org/10.1016/j.ccr.2011.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vallabhaneni KC, Hassler MY, Abraham A, Whitt J, Mo YY, Atfi A, et al. Mesenchymal stem/stromal cells under stress increase osteosarcoma migration and apoptosis resistance via extracellular vesicle mediated communication. PLoS One. 2016;11:1–14. https://doi.org/10.1371/journal.pone.0166027.

    Article  CAS  Google Scholar 

  49. Tu B, Peng Z-X, Fan Q-M, Du L, Yan W, Tang T-T. Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp Cell Res. 2014;320:164–73. https://doi.org/10.1016/j.yexcr.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  50. Cortini M, Massa A, Avnet S, Bonuccelli G, Baldini N. Tumor-activated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion. Papaccio G, editor. PLoS One. 2016;11:e0166500. https://doi.org/10.1371/journal.pone.0166500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heymann M-FF, Lézot F, Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol. 2019;343:103711. https://doi.org/10.1016/j.cellimm.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416. https://doi.org/10.1038/nrclinonc.2016.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buddingh EP, Kuijjer ML, Duim RAJ, Bürger H, Agelopoulos K, Myklebost O, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17:2110–9. https://doi.org/10.1158/1078-0432.CCR-10-2047.

    Article  CAS  PubMed  Google Scholar 

  55. Koirala P, Roth ME, Gill J, Piperdi S, Chinai JM, Geller DS, et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep30093.

    Article  CAS  Google Scholar 

  56. Dumars C, Ngyuen J-M, Gaultier A, Lanel R, Corradini N, Gouin F, et al. Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget. 2016;7:78343–54. https://doi.org/10.18632/oncotarget.13055.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jia X, Feng G, Wang Z, Du Y, Shen C, Hui H, et al. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects. Oncotarget. 2016;7:20934–44. https://doi.org/10.18632/oncotarget.8064.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liang X, Guo W, Ren T, Huang Y, Sun K, Zhang H, et al. Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta. Cancer Lett. 2020;480:4–14. https://doi.org/10.1016/j.canlet.2020.03.019.

    Article  CAS  PubMed  Google Scholar 

  59. Sundara YT, Kostine M, Cleven AHG, Bovée JVMG, Schilham MW, Cleton-Jansen A-M. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119–28. https://doi.org/10.1007/s00262-016-1925-3.

    Article  CAS  PubMed  Google Scholar 

  60. Gomez-Brouchet A, Illac C, Gilhodes J, Bouvier C, Aubert S, Guinebretiere J-M, et al. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3 t. Oncoimmunology. 2017;6:e1331193. https://doi.org/10.1080/2162402X.2017.1331193.

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74. https://doi.org/10.1038/nrc.2017.51.

    Article  CAS  PubMed  Google Scholar 

  62. An R, Schmid R, Klausing A, Robering JW, Weber M, Bäuerle T, et al. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. FASEB J. 2018;32:5587–601. https://doi.org/10.1096/fj.201800135RR.

    Article  CAS  PubMed  Google Scholar 

  63. Ren K, Yao N, Wang G, Tian L, Ma J, Shi X, et al. Vasculogenic mimicry: a new prognostic sign of human osteosarcoma. Hum Pathol. 2014;45:2120–9. https://doi.org/10.1016/j.humpath.2014.06.013.

    Article  PubMed  Google Scholar 

  64. Kunz P, Fellenberg J, Moskovszky L, Sápi Z, Krenacs T, Machado I, et al. Improved survival in osteosarcoma patients with atypical low vascularization. Ann Surg Oncol. 2015;22:489–96. https://doi.org/10.1245/s10434-014-4001-2.

    Article  PubMed  Google Scholar 

  65. Chen D, Zhang Y-J, Zhu K, Wang W-C. A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma. Tumor Biol. 2013;34:1895–9. https://doi.org/10.1007/s13277-013-0733-z.

    Article  CAS  Google Scholar 

  66. Takagi S, Takemoto A, Takami M, Oh-hara T, Fujita N. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Sci. 2014;105:983–8. https://doi.org/10.1111/cas.12464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 2020;39:178. https://doi.org/10.1186/s13046-020-01685-w.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hirahata M, Osaki M, Kanda Y, Sugimoto Y, Yoshioka Y, Kosaka N, et al. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Med. 2016;5:892–902. https://doi.org/10.1002/cam4.651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Abulimiti N, Wang C. Collagen triple helix repeat containing 1 expression in osteosarcoma: a new predictor of prognosis. Ann Clin Lab Sci. 2018;48:338–44.

    CAS  PubMed  Google Scholar 

  70. Shi K, Wang SL, Shen B, Yu FQ, Weng DF, Lin JH. Clinicopathological and prognostic values of fibronectin and integrin αvβ3 expression in primary osteosarcoma. World J Surg Oncol. 2019;17:1–12. https://doi.org/10.1186/s12957-019-1566-z.

    Article  Google Scholar 

  71. Xu W, Li Z, Zhu X, Xu R, Xu Y. MiR-29 family inhibits resistance to methotrexate and promotes cell apoptosis by targeting COL3A1 and MCL1 in osteosarcoma. Med Sci Monit. 2018;24:8812–21. https://doi.org/10.12659/MSM.911972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment – where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32. https://doi.org/10.1016/j.ctrv.2013.11.006.

    Article  PubMed  Google Scholar 

  73. Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma pathogenesis leads the way to new target treatments. Int J Mol Sci. 2021;22:813. https://doi.org/10.3390/ijms22020813.

    Article  CAS  PubMed Central  Google Scholar 

  74. Chen Y, Di Grappa MA, Molyneux SD, McKee TD, Waterhouse P, Penninger JM, et al. RANKL blockade prevents and treats aggressive osteosarcomas. Sci Transl Med. 2015;7:317ra197-317ra197. https://doi.org/10.1126/scitranslmed.aad0295.

    Article  CAS  PubMed  Google Scholar 

  75. Boyce AM. Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep. 2017;15:283–92. https://doi.org/10.1007/s11914-017-0380-1.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5:513–23. https://doi.org/10.1016/S2213-8587(17)30138-9.

    Article  CAS  PubMed  Google Scholar 

  77. Punzo F, Tortora C, Argenziano M, Di Pinto D, Pota E, Di Martino M, et al. Can denosumab be used in combination with doxorubicin in osteosarcoma? Oncotarget. 2020;11:2763–73. https://doi.org/10.18632/oncotarget.27669.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ohba T, Cates JMM, Cole HA, Slosky DA, Haro H, Ichikawa J, et al. Pleiotropic effects of bisphosphonates on osteosarcoma. Bone. 2014;63:110–20. https://doi.org/10.1016/j.bone.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  79. Ohba T, Cole HA, Cates JMM, Slosky DA, Haro H, Ando T, et al. Bisphosphonates inhibit osteosarcoma-mediated osteolysis via attenuation of tumor expression of MCP-1 and RANKL. J Bone Miner Res. 2014;29:1431–45. https://doi.org/10.1002/jbmr.2182.

    Article  CAS  PubMed  Google Scholar 

  80. Goldsby RE, Fan TM, Villaluna D, Wagner LM, Isakoff MS, Meyer J, et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent chemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Eur J Cancer. 2013;49:2384–91. https://doi.org/10.1016/j.ejca.2013.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH, et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma. Cancer. 2009;115:5339–48. https://doi.org/10.1002/cncr.24566.

    Article  CAS  PubMed  Google Scholar 

  82. Punzo F, Bellini G, Tortora C, Di Pinto D, Argenziano M, Pota E, et al. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget. 2020;11:687–98. https://doi.org/10.18632/oncotarget.27479.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Meyers PA. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Advances in Experimental Medicine and Biology. 2020 133–139. https://doi.org/10.1007/978-3-030-43032-0_11

  84. Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22:1364–70. https://doi.org/10.1158/1078-0432.CCR-15-0491.

    Article  CAS  PubMed  Google Scholar 

  85. Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18:1493–501. https://doi.org/10.1016/S1470-2045(17)30624-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tian Z, Niu X, Yao W. Receptor tyrosine kinases in osteosarcoma treatment: which is the key target? Front Oncol. 2020;10:1–13. https://doi.org/10.3389/fonc.2020.01642.

    Article  Google Scholar 

  87. Navid F, Santana VM, Neel M, McCarville MB, Shulkin BL, Wu J, et al. A phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int J Cancer. 2017;141:1469–77. https://doi.org/10.1002/ijc.30841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PCW, Chugh R, et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: Results of a Sarcoma Alliance. Cancer. 2014;120:2448–56. https://doi.org/10.1002/cncr.28728.

    Article  CAS  PubMed  Google Scholar 

  89. Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21:446–55. https://doi.org/10.1016/S1470-2045(19)30825-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morrow JJ, Bayles I, Funnell APW, Miller TE, Saiakhova A, Lizardo MM, et al. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat Med. 2018;24:176–85. https://doi.org/10.1038/nm.4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koshkina NV, Khanna C, Mendoza A, Guan H, DeLauter L, Kleinerman ES. Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res. 2007;5:991–9. https://doi.org/10.1158/1541-7786.MCR-07-0007.

    Article  CAS  PubMed  Google Scholar 

  92. Gross AC, Cam H, Phelps DA, Saraf AJ, Bid HK, Cam M, et al. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI insight. 2018;3. https://doi.org/10.1172/jci.insight.99791

  93. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18. https://doi.org/10.1038/nrc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18:495–6. https://doi.org/10.1038/d41573-019-00074-z.

    Article  CAS  PubMed  Google Scholar 

  95. León IE, Cadavid-Vargas JF, Resasco A, Maschi F, Ayala MA, Carbone C, et al. In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice. J Biol Inorg Chem. 2016;21:1009–20. https://doi.org/10.1007/s00775-016-1397-0.

    Article  CAS  PubMed  Google Scholar 

  96. Guo X, Yu L, Zhang Z, Dai G, Gao T, Guo W. miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1. Cancer Cell Int. 2017;17:29. https://doi.org/10.1186/s12935-017-0398-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bai C, Yang M, Fan Z, Li S, Gao T, Fang Z. Associations of chemo- and radio-resistant phenotypes with the gap junction, adhesion and extracellular matrix in a three-dimensional culture model of soft sarcoma. J Exp Clin Cancer Res. 2015;34:1–10. https://doi.org/10.1186/s13046-015-0175-0.

    Article  CAS  Google Scholar 

  98. Collier CD, Wirtz EC, Knafler GJ, Morris WZ, Getty PJ, Greenfield EM. Micrometastatic drug screening platform shows heterogeneous response to MAP chemotherapy in osteosarcoma cell lines. Clin Orthop Relat Res. 2018;476:1400–11. https://doi.org/10.1007/s11999.0000000000000059.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Oliveira MB, Neto AI, Correia CR, Rial-Hermida MI, Alvarez-Lorenzo C, Mano JF. Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl Mater Interfaces. 2014;6:9488–95. https://doi.org/10.1021/am5018607.

    Article  CAS  PubMed  Google Scholar 

  100. Sarkar S, Peng CC, Tung YC. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. PLoS One. 2020;15:1–21. https://doi.org/10.1371/journal.pone.0240833.

    Article  CAS  Google Scholar 

  101. Freeman FE, Burdis R, Mahon OR, Kelly DJ, Artzi N. A spheroid model of early and late-stage osteosarcoma mimicking the divergent relationship between tumor elimination and bone regeneration. Adv Healthc Mater. 2021;2101296:2101296. https://doi.org/10.1002/adhm.202101296.

    Article  CAS  Google Scholar 

  102. Monteiro CF, Santos SC, Custódio CA, Mano JF. Human platelet lysates-based hydrogels: a novel personalized 3d platform for spheroid invasion assessment. Adv Sci. 2020;7. https://doi.org/10.1002/advs.201902398

  103. Monteiro CF, Custódio CA, Mano JF. Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomater. 2021. https://doi.org/10.1016/j.actbio.2021.07.034.

    Article  PubMed  Google Scholar 

  104. Jiang T, Xu G, Chen X, Huang X, Zhao J, Zheng L. Impact of hydrogel elasticity and adherence on osteosarcoma cells and osteoblasts. Adv Healthc Mater. 2019;8:1–11. https://doi.org/10.1002/adhm.201801587.

    Article  CAS  Google Scholar 

  105. Fallica B, Maffei JS, Villa S, Makin G, Zaman M. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels. Munshi HG, editor. PLoS One. 2012;7:e48024. https://doi.org/10.1371/journal.pone.0048024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Techavichit P, Gao Y, Kurenbekova L, Shuck R, Donehower LA, Yustein JT. Secreted frizzled-related protein 2 (sFRP2) promotes osteosarcoma invasion and metastatic potential. BMC Cancer. 2016;16:869. https://doi.org/10.1186/s12885-016-2909-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baranski Z, Booij TH, Kuijjer ML, de Jong Y, Cleton-Jansen A-M, Price LS, et al. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation. Genes Cancer. 2015;6:503–12. https://doi.org/10.18632/genesandcancer.91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zuo Y, He X, Yang Y, Wei D, Sun J, Zhong M, et al. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomater. 2016;38:153–62. https://doi.org/10.1016/j.actbio.2016.04.036.

    Article  CAS  PubMed  Google Scholar 

  109. Nishimura A, Akeda K, Matsubara T, Kusuzaki K, Matsumine A, Masuda K, et al. Transfection of NF-κB decoy oligodeoxynucleotide suppresses pulmonary metastasis by murine osteosarcoma. Cancer Gene Ther. 2011;18:250–9. https://doi.org/10.1038/cgt.2010.75.

    Article  CAS  PubMed  Google Scholar 

  110. Yang F, Lu J, Ke Q, Peng X, Guo Y, Xie X. Magnetic mesoporous calcium sillicate/chitosan porous scaffolds for enhanced bone regeneration and photothermal-chemotherapy of osteosarcoma. Sci Rep. 2018;8:7345. https://doi.org/10.1038/s41598-018-25595-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bassi G, Panseri S, Dozio SM, Sandri M, Campodoni E, Dapporto M, et al. Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-79448-y.

    Article  CAS  Google Scholar 

  112. Palamà IE, Arcadio V, D’Amone S, Biasiucci M, Gigli G, Cortese B. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep. 2017;7:12672. https://doi.org/10.1038/s41598-017-12824-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Riesco R, Boyer L, Blosse S, Lefebvre PM, Assemat P, Leichle T, et al. Water-in-PDMS Emulsion templating of highly interconnected porous architectures for 3D cell culture. ACS Appl Mater Interfaces. 2019;11:28631–40. https://doi.org/10.1021/acsami.9b07564.

    Article  CAS  PubMed  Google Scholar 

  114. Tan PHS, Chia SS, Toh SL, Goh JCH, Nathan SS. The dominant role of IL-8 as an angiogenic driver in a three-dimensional physiological tumor construct for drug testing. Tissue Eng Part A. 2014;20:1758–66. https://doi.org/10.1089/ten.tea.2013.0245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In vitro model (R)evolution: unveiling tumor–stroma interactions. Trends in Cancer. 2021;7:249–64. https://doi.org/10.1016/j.trecan.2020.10.009.

    Article  CAS  PubMed  Google Scholar 

  116. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23–36. https://doi.org/10.1038/nmat4089.

    Article  CAS  PubMed  Google Scholar 

  117. González Díaz EC, Sinha S, Avedian RS, Yang F. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression. Acta Biomater. 2019;99:18–32. https://doi.org/10.1016/j.actbio.2019.08.020.

    Article  CAS  PubMed  Google Scholar 

  118. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54. https://doi.org/10.1016/j.tibtech.2012.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Monteiro CF, Custódio CA, Mano JF. Three-dimensional osteosarcoma models for advancing drug discovery and development. Adv Ther. 2019;2:1800108. https://doi.org/10.1002/adtp.201800108.

    Article  Google Scholar 

  120. De Luca A, Raimondi L, Salamanna F, Carina V, Costa V, Bellavia D, et al. Relevance of 3d culture systems to study osteosarcoma environment. J Exp Clin Cancer Res. 2018;37:1–15. https://doi.org/10.1186/s13046-017-0663-5.

    Article  CAS  Google Scholar 

  121. Stock K, Estrada MF, Vidic S, Gjerde K, Rudisch A, Santo VE, et al. Capturing tumor complexity in vitro: comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:1–15. https://doi.org/10.1038/srep28951.

    Article  CAS  Google Scholar 

  122. Pavlou M, Shah M, Gikas P, Briggs T, Roberts SJJ, Cheema U. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Acta Biomater. 2019;96:247–57. https://doi.org/10.1016/j.actbio.2019.07.011.

    Article  CAS  PubMed  Google Scholar 

  123. Chen TY, Huang HC, Cao JL, Xin YJ, Luo WF, Ao NJ. Preparation and characterization of alginate/HACC/oyster shell powder biocomposite scaffolds for potential bone tissue engineering applications. RSC Adv. 2016;6:35577–88. https://doi.org/10.1039/c5ra26805b.

    Article  CAS  Google Scholar 

  124. Qin D, Wang N, You X-G, Zhang A-D, Chen X-G, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci. 2022. https://doi.org/10.1039/D1BM01294K.

    Article  PubMed  Google Scholar 

  125. Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019;14:4333–51. https://doi.org/10.2147/IJN.S209431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Holzapfel BM, Wagner F, Loessner D, Holzapfel NP, Thibaudeau L, Crawford R, et al. Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials. 2014;35:4108–15. https://doi.org/10.1016/j.biomaterials.2014.01.062.

    Article  CAS  PubMed  Google Scholar 

  127. Jabbari E, Sarvestani SK, Daneshian L, Moeinzadeh S. Optimum 3D matrix stiffness for maintenance of cancer stem cells is dependent on tissue origin of cancer cells. Engler AJ, editor. PLoS One. 2015;10:e0132377. https://doi.org/10.1371/journal.pone.0132377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sieh S, Lubik AA, Clements JA, Nelson CC, Hutmacher DW. Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis. 2010;6:181–8. https://doi.org/10.4161/org.6.3.12041.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021;9:18. https://doi.org/10.1038/s41413-021-00139-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ma H, He C, Cheng Y, Yang Z, Zang J, Liu J, et al. Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl Mater Interfaces. 2015;7:27040–8. https://doi.org/10.1021/acsami.5b09112.

    Article  CAS  PubMed  Google Scholar 

  131. Rong ZJ, Yang LJ, Cai BT, Zhu LX, Cao YL, Wu GF, et al. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM–PLGA microspheres for bone cancer treatment. J Mater Sci Mater Med. 2016;27:1–12. https://doi.org/10.1007/s10856-016-5699-0.

    Article  CAS  Google Scholar 

  132. Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D: in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci. 2020;8:1855–64. https://doi.org/10.1039/c9bm02075f.

    Article  CAS  PubMed  Google Scholar 

  133. Nath S, Devi GR. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Baek NH, Seo OW, Kim MS, Hulme J, An SSA. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. Onco Targets Ther. 2016;9:7207–18. https://doi.org/10.2147/OTT.S112566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Martins-Neves SR, Lopes ÁO, do Carmo A, Paiva AA, Simões PC, Abrunhosa AJ, et al. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. 2012;12:139. https://doi.org/10.1186/1471-2407-12-139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chaddad H, Kuchler-Bopp S, Fuhrmann G, Gegout H, Ubeaud-Sequier G, Schwinté P, et al. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization. Exp Cell Res. 2017;360:138–45. https://doi.org/10.1016/j.yexcr.2017.08.035.

    Article  CAS  PubMed  Google Scholar 

  137. Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D cancer models: depicting cellular crosstalk within the tumour microenvironment. Cancers (Basel). 2021;13:4610. https://doi.org/10.3390/cancers13184610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bauleth-Ramos T, Feijão T, Gonçalves A, Shahbazi MA, Liu Z, Barrias C, et al. Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. J Control Release. 2020;323:398–411. https://doi.org/10.1016/j.jconrel.2020.04.025.

    Article  CAS  PubMed  Google Scholar 

  139. Kuen J, Darowski D, Kluge T, Majety M. Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS One. 2017;12:1–19. https://doi.org/10.1371/journal.pone.0182039.

    Article  CAS  Google Scholar 

  140. Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, et al. 3D–3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018;163:185–97. https://doi.org/10.1016/j.biomaterials.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  141. Priwitaningrum DL, Blondé J-BG, Sridhar A, van Baarlen J, Hennink WE, Storm G, et al. Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration. J Control Release. 2016;244:257–68. https://doi.org/10.1016/j.jconrel.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  142. Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23:393–410. https://doi.org/10.1016/j.molmed.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  143. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 2020;15:3380–409. https://doi.org/10.1038/s41596-020-0379-4.

    Article  CAS  PubMed  Google Scholar 

  144. He A, Huang Y, Cheng W, Zhang D, He W, Bai Y, et al. Organoid culture system for patient-derived lung metastatic osteosarcoma. Med Oncol. 2020;37:1–9. https://doi.org/10.1007/s12032-020-01429-y.

    Article  CAS  Google Scholar 

  145. Shemesh J, Jalilian I, Shi A, Heng Yeoh G, Knothe Tate ML, Ebrahimi WM. Flow-induced stress on adherent cells in microfluidic devices. Lab Chip. 2015;15:4114–27. https://doi.org/10.1039/C5LC00633C.

    Article  CAS  PubMed  Google Scholar 

  146. Mitxelena-Iribarren O, Zabalo J, Arana S, Mujika M. Improved microfluidic platform for simultaneous multiple drug screening towards personalized treatment. Biosens Bioelectron. 2019;123:237–43. https://doi.org/10.1016/j.bios.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  147. Kim S, Kim W, Lim S, Jeon J. Vasculature-on-a-chip for in vitro disease models. Bioengineering. 2017;4:8. https://doi.org/10.3390/bioengineering4010008.

    Article  CAS  PubMed Central  Google Scholar 

  148. Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of metastasis study models toward metastasis-on-a-chip: the ultimate model? Small. 2021;17. https://doi.org/10.1002/smll.202006009

  149. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Yuan Hsin H, Ingber DE. Reconstituting organ-level lung functions on a chip. Science (80-). 2010;328:1662–8. https://doi.org/10.1126/science.1188302.

    Article  CAS  Google Scholar 

  150. Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 2017;21:508–16. https://doi.org/10.1016/j.celrep.2017.09.043.

    Article  CAS  PubMed  Google Scholar 

  151. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11:411–25. https://doi.org/10.1038/nrc3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mansoorifar A, Gordon R, Bergan RC, Bertassoni LE. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. Adv Funct Mater. 2021;31:2006796. https://doi.org/10.1002/adfm.202006796.

    Article  CAS  Google Scholar 

  153. Ahn J, Lim J, Jusoh N, Lee J, Park T-EE, Kim YT, et al. 3D Microfluidic bone tumor microenvironment comprised of hydroxyapatite/fibrin composite. Front Bioeng Biotechnol. 2019;7:1–13. https://doi.org/10.3389/fbioe.2019.00168.

    Article  Google Scholar 

  154. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A. 2015;112:214–9. https://doi.org/10.1073/pnas.1417115112.

    Article  CAS  PubMed  Google Scholar 

  155. Bongio M, Lopa S, Gilardi M, Bersini S, Moretti M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine. 2016;11:1073–91. https://doi.org/10.2217/nnm-2015-0021.

    Article  CAS  PubMed  Google Scholar 

  156. Ireson CR, Alavijeh MS, Palmer AM, Fowler ER, Jones HJ. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer. 2019;121:101–8. https://doi.org/10.1038/s41416-019-0495-5.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer. 2017;17:751–65. https://doi.org/10.1038/nrc.2017.92.

    Article  CAS  PubMed  Google Scholar 

  158. LeBlanc AK, Mazcko CN. Improving human cancer therapy through the evaluation of pet dogs. Nat Rev Cancer. 2020;20:727–42. https://doi.org/10.1038/s41568-020-0297-3.

    Article  CAS  PubMed  Google Scholar 

  159. Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods. 2018;15:73–80. https://doi.org/10.1038/nmeth.4511.

    Article  CAS  PubMed  Google Scholar 

  160. Lizardo MM, Sorensen PH. Practical considerations in studying metastatic lung colonization in osteosarcoma using the pulmonary metastasis assay. J Vis Exp. 2018. https://doi.org/10.3791/56332.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lizardo MM, Morrow JJ, Miller TE, Hong ES, Ren L, Mendoza A, et al. Upregulation of glucose-regulated protein 78 in metastatic cancer cells is necessary for lung metastasis progression. Neoplasia. 2016;18:699–710. https://doi.org/10.1016/j.neo.2016.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ni BS, Tzao C, Huang JH. Plug-and-play in vitro metastasis system toward recapitulating the metastatic cascade. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-54711-z.

    Article  CAS  Google Scholar 

  163. Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CCW, et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. https://doi.org/10.1016/j.addr.2021.05.008.

    Article  CAS  PubMed  Google Scholar 

  164. Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, et al. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip. 2019;19:2822–33. https://doi.org/10.1039/C9LC00140A.

    Article  CAS  PubMed  Google Scholar 

  165. Caballero D, Kaushik S, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient. Biomaterials. 2017;149:98–115. https://doi.org/10.1016/j.biomaterials.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  166. Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng. 2019;116:936–44. https://doi.org/10.1002/bit.26871.

    Article  CAS  PubMed  Google Scholar 

  167. Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7:1–16. https://doi.org/10.1038/s41598-017-08879-x.

    Article  CAS  Google Scholar 

  168. Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017;51:1–20. https://doi.org/10.1016/j.actbio.2017.01.035.

    Article  CAS  PubMed  Google Scholar 

  169. Wang YI, Shuler ML. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip. 2018;18:2563–74. https://doi.org/10.1039/c8lc00394g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Van Duinen V, Van Den Heuvel A, Trietsch SJ, Lanz HL, Van Gils JM, Van Zonneveld AJ, et al. 96 perfusable blood vessels to study vascular permeability in vitro. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/s41598-017-14716-y.

    Article  CAS  Google Scholar 

  171. Vis MAM, Ito K, Hofmann S. Impact of culture medium on cellular interactions in in vitro co-culture systems. Front Bioeng Biotechnol. 2020;8:1–8. https://doi.org/10.3389/fbioe.2020.00911.

    Article  Google Scholar 

  172. Sasaki H, Enomoto J, Ikeda Y, Honda H, Fukuda J, Kato R. Comparisons of cell culture medium using distribution of morphological features in microdevice. J Biosci Bioeng. 2016;121:117–23. https://doi.org/10.1016/j.jbiosc.2015.05.011.

    Article  CAS  PubMed  Google Scholar 

  173. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2020. https://doi.org/10.1038/s41573-020-0079-3.

    Article  PubMed  Google Scholar 

  174. Mohseny AB, MacHado I, Cai Y, Schaefer KL, Serra M, Hogendoorn PCW, et al. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Investig. 2011;91:1195–205. https://doi.org/10.1038/labinvest.2011.72.

    Article  PubMed  Google Scholar 

  175. Bray LJ, Hutmacher DW, Bock N. Addressing patient specificity in the engineering of tumor models. Front Bioeng Biotechnol. 2019;7:1–36. https://doi.org/10.3389/fbioe.2019.00217.

    Article  Google Scholar 

  176. Bar-Ephraim YE, Kretzschmar K, Clevers H. Organoids in immunological research. Nat Rev Immunol. 2020;20:279–93. https://doi.org/10.1038/s41577-019-0248-y.

    Article  CAS  PubMed  Google Scholar 

  177. Bauman E, Feijão T, Carvalho DTO, Granja PL, Barrias CC. Xeno-free pre-vascularized spheroids for therapeutic applications. Sci Rep. 2018;8:1–13. https://doi.org/10.1038/s41598-017-18431-6.

    Article  CAS  Google Scholar 

  178. Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM. Evaluating biomaterial- and microfluidic-based 3D tumor models. Trends Biotechnol. 2015;33:667–78. https://doi.org/10.1016/j.tibtech.2015.09.009.

    Article  CAS  PubMed  Google Scholar 

  179. Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3:21–37. https://doi.org/10.1038/s41578-018-0006-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. npj Precis Oncol. 2020;4:18. https://doi.org/10.1038/s41698-020-0121-2.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G. 3D Printing and bioprinting to model bone cancer: the role of materials and nanoscale cues in directing cell behavior. Cancers (Basel). 2021;13:4065. https://doi.org/10.3390/cancers13164065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26:608–23. https://doi.org/10.1016/j.celrep.2018.12.090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang X, Tolba E, Schröder HC, Neufurth M, Feng Q, Diehl-Seifert B, et al. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D Cell bioprinting. Malaval L, editor. PLoS One. 2014;9:e112497. https://doi.org/10.1371/journal.pone.0112497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Neufurth M, Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Ziebart T, et al. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials. 2014;35:8810–9. https://doi.org/10.1016/j.biomaterials.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  185. Cui H, Esworthy T, Zhou X, Hann SY, Glazer RI, Li R, et al. Engineering a novel 3D printed vascularized tissue model for investigating breast cancer metastasis to bone. Adv Healthc Mater. 2020;9:1900924. https://doi.org/10.1002/adhm.201900924.

    Article  CAS  Google Scholar 

  186. Pouliot N, Pearson HB BA. Investigating metastasis using in vitro platforms. In: In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK100379/.

  187. Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip. 2017;17:2395–420. https://doi.org/10.1039/C6LC01554A.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was financed by Portuguese funds through FCT-Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Leite Pereira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J., Sarmento, B. & Pereira, C.L. Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models. In vitro models 1, 5–27 (2022). https://doi.org/10.1007/s44164-022-00008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-022-00008-x

Keywords

Navigation