Skip to main content
Log in

Discrete Maximal Operators Over Surfaces of Higher Codimension

  • Original Research Article
  • Published:
La Matematica Aims and scope Submit manuscript

Abstract

Integration over curved manifolds with higher codimension and, separately, discrete variants of continuous operators, have been two important, yet separate themes in harmonic analysis, discrete geometry and analytic number theory research. Here we unite these themes to study discrete analogs of operators involving higher (intermediate) codimensional integration. We consider a maximal operator that averages over triangular configurations and prove several bounds that are close to optimal. A distinct feature of our approach is the use of multilinearity to obtain non-trivial \(\ell ^1\)-estimates by a rather general idea that is likely to be applicable to other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, T.C., Cook, B., Hughes, K., Kumchev, A.: Improved \(\ell ^p\)-boundedness for integral \(k\)-spherical maximal functions. Discret. Anal. 2018, Paper 10

  2. Anderson, T.C., Cook, B., Hughes, K., Kumchev, A.: On the ergodic Waring-Goldbach problem. J. Funct. Anal. 282(5), 109334 (2022)

  3. Anderson, T.C., Palsson, E.A.: Bounds for discrete multilinear spherical maximal functions in higher dimensions. Bull. Lond. Math. Soc. 53(3), 855–860 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arkhipov, G.I., Chubarikov, V.N., Karatsuba, A.A.: Trigonometric Sums in Number Theory and Analysis. Walter de Gruyter GmbH & Co., Berlin (2004)

    MATH  Google Scholar 

  5. Beeson, M.J.: Triangles with vertices on lattice points. Am. Math. Mon. 99(3), 243–252 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birch, B.J.: Forms in many variables. Proc. R. Soc. Lond. Ser. A 265 (1961/62), 245–263

  7. Bourgain, J.: Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Sér. I Math. 301(10), 499–502 (1985)

    MathSciNet  Google Scholar 

  8. Bourgain, J.: A Szemerédi type theorem for sets of positive density in \({\mathbb{R}}^k\). Israel J. Math. 54(3), 307–316 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J.: On the maximal ergodic theorem for certain subsets of the integers. Israel J. Math. 61(1), 39–72 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Demeter, C.: Mean value estimates for Weyl sums in two dimensions. J. Lond. Math. Soc. (2) 94(3), 814–838 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J., Demeter, C.: Three applications of the Siegel mass formula. In: Geometric Aspects of Functional Analysis, pp. 99–111. Lecture Notes in Math, vol. 2256. Springer, Cham (2020)

  12. Bourgain, J., Mirek, M., Stein, E.M., Wróbel, B.: On discrete Hardy-Littlewood maximal functions over the balls in \({\mathbb{Z}}^d\): dimension-free estimates. In: Geometric Aspects of Functional Analysis, pp. 127–169. Lecture Notes in Math, vol. 2256. Springer, Cham (2020)

  13. Brandes, J.: Forms representing forms: the definite case. J. Lond. Math. Soc. (2) 92(2), 393–410 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandler, R., Ionascu, E.J.: A characterization of all equilateral triangles in \({\mathbb{Z}}^3\). Integers 8, A19 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Cook, B.: Maximal function inequalities and a theorem of Birch. Israel J. Math. 231(1), 211–241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cook, B., Lyall, N., Magyar, A.: Multilinear maximal operators associated to simplices. J. Lond. Math. Soc. 104(4), 1491–1514 (2021)

  17. Davenport, H.: Cubic forms in thirty-two variables. Philos. Trans. R. Soc. Lond. A 251, 193–232 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dietmann, R., Harvey, M.: On the representation of quadratic forms by quadratic forms. Michigan Math. J. 62(4), 869–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ellenberg, J., Venkatesh, A.: Local-global principles for representations of quadratic forms. Invent. Math. 171(2), 257–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Furstenberg, H., Katznelson, Y., Weiss, B.: Ergodic theory and configurations in sets of positive density. In: Mathematics of Ramsey Theory, Algorithms Combin., vol. 5, pp. 184–198. Springer, Berlin (1990)

  21. Grafakos, L., Greenleaf, A., Iosevich, A., Palsson, E.: Multilinear generalized Radon transforms and point configurations. Forum Math. 27(4), 2323–2360 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenleaf, A., Iosevich, A.: On three point configurations determined by subsets of the Euclidean plane, the associated bilinear operator and applications to discrete geometry. Anal. PDE 5(2), 397–409 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greenleaf, A., Iosevich, A., Liu, B., Palsson, E.A.: A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral. Rev. Mat. Iberoam. 31(3), 799–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Henriot, K., Hughes, K.: On restriction estimates for discrete quadratic surfaces. Int. Math. Res. Not. IMRN 2019(23), 7139–7159 (2019)

  25. Hofmann, S., Iosevich, A.: Circular averages and Falconer/Erdős distance conjecture in the plane for random metrics. Proc. Am. Mat. Soc. 133, 133–144 (2005)

    Article  MATH  Google Scholar 

  26. Hsia, J.S., Kitaoka, Y., Kneser, M.: Representations of positive definite quadratic forms. J. Reine Angew. Math. 301, 132–141 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Hughes, K.: Maximal functions and ergodic averages related to Waring’s problem. Israel J. Math. 217(1), 17–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, K.: Restricted weak-type endpoint estimates for \(k\)-spherical maximal functions. Math. Z 286(3–4), 1303–1321 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ionascu, E.J.: A parametrization of equilateral triangles having integer coordinates. J. Integer Seq. 10(6), Article 07.6.7 (2007)

  30. Ionascu, E.J.: Counting all equilateral triangles in \(\lbrace 0,1,\ldots , n\rbrace ^{3}\). Acta Math. Univ. Comenian. (N.S.) 77(1), 129–140 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Ionascu, E.J.: Equilateral triangles in \({\mathbb{Z}}^4\). Vietnam J. Math. 43(3), 525–539 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ionescu, A.D.: An endpoint estimate for the discrete spherical maximal function. Proc. Am. Math. Soc. 132(5), 1411–1417 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iosevich, A., Łaba, I.: K-distance sets, Falconer conjecture, and discrete analogs. Integers 5, A08 (2005)

  34. Iosevich, A., Liu, B.: Equilateral triangles in subsets of \({\mathbb{R}}^d\) of large Hausdorff dimension. Israel J. Math. 231(1), 123–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iosevich, A., Magyar, Á.: Simplices in thin subsets of Euclidean spaces, preprint arXiv:2009.04902

  36. Kesler, R., Lacey, M.T.: \(\ell ^p\)-improving inequalities for discrete spherical averages. Anal. Math. 46(1), 85–95 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kitaoka, Y.: Modular forms of degree \(n\) and representation by quadratic forms V. Nagoya Math. J. 111, 173–179 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kloosterman, H.D.: On the representation of numbers in the form \(ax^2 + by^2 + cz^2 + dt^2\). Acta Math. 49, 407–464 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kumchev, A.V.: On a double exponential sum. In: Combinatorial and Additive Number Theory IV (Proceedings of the CANT Workshops, New York, NY: May 21–24, 2019 and June 1–5, 2020), pp. 371–383. Springer, Cham (2021)

  40. Magyar, A.: \(L^p\)-bounds for spherical maximal operators on \({\mathbb{Z}}^n\). Rev. Mat. Iberoam. 13(2), 307–317 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Magyar, A.: Diophantine equations and ergodic theorems. Am. J. Math. 124(5), 921–953 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Magyar, A.: On distance sets of large sets of integer points. Israel J. Math. 164, 251–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Magyar, A.: \(k\)-point configurations in sets of positive density of \({\mathbb{Z}}^n\). Duke Math. J. 146(1), 1–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Magyar, A., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical averages. Ann. Math. (2) 155(1), 189–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mattila, P.: Fourier Analysis and Hausdorff Dimension. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  46. Pierce, L.B.: On discrete fractional integral operators and mean values of Weyl sums. Bull. Lond. Math. Soc. 43(3), 597–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Palsson, E.A., Sovine, S.R.: The triangle averaging operator. J. Funct. Anal. 279(8), 108671 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Raghavan, S.: Modular forms of degree \(n\) and representation by quadratic forms. Ann. Math. (2) 70(3), 446–477 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stein, E.M.: Maximal functions: spherical means. Proc. Natl. Acad. Sci. USA 73(7), 2174–2175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  51. Stein, E.M., Wainger, S.: Two discrete fractional integral operators revisited. J. Anal. Math. 87, 451–479 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tao, T., Wright, J.: \(L^p\) improving bounds for averages along curves. J. Am. Math. Soc. 16(3), 605–638 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vaughan, R.C.: The Hardy-Littlewood Method, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  54. Vaughan, R.C.: On generating functions in additive number theory I. In: Analytic Number Theory. Essays in Honour of Klaus Roth, pp. 436–448. Cambridge University Press, Cambridge (2009)

Download references

Acknowledgements

The first author was supported in part by NSF grants DMS-1502464 and DMS-1954407. The second author thanks Towson University for sabbatical support that allowed this work to be completed. The third author was supported in part by Simons Foundation Grant #360560. Last but not least, the first two authors thank Trevor Wooley for several helpful discussions and generous advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel V. Kumchev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, T.C., Kumchev, A.V. & Palsson, E.A. Discrete Maximal Operators Over Surfaces of Higher Codimension. La Matematica 1, 442–479 (2022). https://doi.org/10.1007/s44007-021-00017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44007-021-00017-4

Keywords

Navigation